跳至內容

Rosser定理

維基百科,自由的百科全書

在數論上,Rosser定理指的是第質數會大於,其中自然對數函數。

這定理最早由J. Barkley Rosser於1939年發表。[1]

完整陳述

[編輯]

這定理的完整陳述如下:

為第質數,那對於任意的而言,以下不等式成立:

1999年,Pierre Dusart證明了一個更強的下界:[2]

參見

[編輯]

參考資料

[編輯]
  1. ^ Rosser, J. B. "The -th Prime is Greater than ". Proceedings of the London Mathematical Society 45:21-44, 1939. doi:10.1112/plms/s2-45.1.21付費文獻
  2. ^ Dusart, Pierre. The th prime is greater than for . Mathematics of Computation. 1999, 68 (225): 411–415. MR 1620223. doi:10.1090/S0025-5718-99-01037-6可免費查閱. 

外部連結

[編輯]