極向–環向分解
外觀
在向量分析中,極向–環向分解(英文:poloidal–toroidal decomposition)是亥姆霍茲分解的一個受限制的形式,常用於螺線向量場在球坐標系下的分析,如磁場和不可壓縮流體等。[1]考慮一個三維向量場F滿足
可以被表示為一個軸矢量場(toroidal vector field)和一個極矢量場(poloidal vector field)的和:
其中是球坐標中的徑向矢量,縱場為
為一標量場,[2]橫場為
為一標量場。[2]這一向量分解法是對稱的,因為縱場的旋度是橫場,而橫場的旋度是縱場。[3]縱場與球心在原點的球面相切
- ,[3]
而橫場的旋度同樣地與這些球面相切
- .[4]
若標量場和的平均值在任意半徑為的球面上都等於零,則這一分解方式是唯一的。[2]
另見
[編輯]腳註
[編輯]- ^ Subrahmanyan Chandrasekhar. Hydrodynamic and hydromagnetic stability. International Series of Monographs on Physics. Oxford: Clarendon. 1961. See discussion on page 622 [2016-04-29]. (原始內容存檔於2012-02-12).
- ^ 2.0 2.1 Backus 1986,第88頁.
- ^ 3.0 3.1 Backus, Parker & Constable 1996,第178頁.
- ^ Backus, Parker & Constable 1996,第179頁.
參考資料
[編輯]- Hydrodynamic and hydromagnetic stability (頁面存檔備份,存於網際網路檔案館), Chandrasekhar, Subrahmanyan; International Series of Monographs on Physics, Oxford: Clarendon, 1961, p. 622.
- Decomposition of solenoidal fields into poloidal fields, toroidal fields and the mean flow.[永久失效連結] Applications to the boussinesq-equations[永久失效連結], Schmitt, B. J. and von Wahl, W; in The Navier-Stokes Equations II — Theory and Numerical Methods, pp. 291–305; Lecture Notes in Mathematics, Springer Berlin/ Heidelberg, Vol. 1530/ 1992.
- Anelastic Magnetohydrodynamic Equations for Modeling Solar and Stellar Convection Zones (頁面存檔備份,存於網際網路檔案館), Lantz, S. R. and Fan, Y.; The Astrophysical Journal Supplement Series, Volume 121, Issue 1, Mar. 1999, pp. 247–264.
- Plane poloidal-toroidal decomposition of doubly periodic vector fields: Part 1. (頁面存檔備份,存於網際網路檔案館) Fields with divergence (頁面存檔備份,存於網際網路檔案館) and Part 2. (頁面存檔備份,存於網際網路檔案館) Stokes equations (頁面存檔備份,存於網際網路檔案館). G. D. McBain. ANZIAM J. (頁面存檔備份,存於網際網路檔案館) 47 (2005) (頁面存檔備份,存於網際網路檔案館)
- Backus, George, Poloidal and toroidal fields in geomagnetic field modeling, Reviews in Geophysics, 1986, 24: 75–109, doi:10.1029/RG024i001p00075.
- Backus, George; Parker, Robert; Constable, Catherine, Foundations of Geomagnetism, Cambridge University Press, 1996, ISBN 0-521-41006-1.