跳至內容

平攤分析

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書

平攤分析(英語:Amortized analysis)在電腦科學中,是用於演算法分析中的方法,平攤分析常用於分析資料結構(動態的資料結構),在使用平攤分析前須知道資料結構各種操作所可能發生的時間,並計算出最壞情況下的操作情況並加以平均,得到操作的平均耗費時間。平攤分析只能確保最壞情況效能的每次操作耗費的平均時間,並不能確認平均情況效能。

一個簡單的例子,一個長度為 的list,在list的最後要加入一筆新的資料此時要花費的操作時間為 ,此時也是加入新的資料的最糟糕的情況。但是,一個 個插入的操作序列仍然可以在 的時間內完成,因為剩下的插入可以在常數時間內完成,因此 個插入可以在 的時間內完成。因此每操作的平攤耗費為

注意平攤分析與平均時間分析和機率演算法的機率分析不同。在平均時間分析中,我們平均化所有可能的輸入;在機率演算法的機率分析中,我們平均化所有可能的隨機選擇;在平攤分析中,我們平均化一系列操作的耗費。平攤分析假設的是最壞情況輸入並且通常不執行隨機選擇。[1]

平攤分析中幾種常用的技術:

  • 聚合分析決定 個操作序列的耗費上界 ,然後計算平均耗費為 [1]
  • 記帳方法確定每個操作的耗費,結合它的直接執行時間及它在對執行時中未來操作的影響。通常來說,許多短操作增量累加成「債」,而通過減少長操作的次數來「償還」。[1]
  • 勢能方法類似記帳方法,但通過預先儲蓄「勢能」而在需要的時候釋放。[1]

平攤分析種類

[編輯]

聚集法(Aggregate method)

[編輯]

計算n個操作的時間複雜度上限T(n) 平攤T(n)至每一個操作,每一個操作的平攤成本是T(n)/n

記帳法(Accounting method)

[編輯]

執行花費較低的operations時先存credit未雨綢繆, 供未來花費較高的operations使用

對每個操作定義一個合法的平攤成本(amortized cost) 假設為第i個操作的actual cost,為第i個操作的amortized cost

,則credit=,我們把credit存起來(deposited),未來可以提取(withdraw) 若,則提取credit

設定每個操作的平攤成本(amortized cost)後,要做valid check確保credit不可以是0,也就是說

位能法(Potential method)

[編輯]

定義一個位能函數(potential function),將資料結構D(例如: 堆疊)的狀態對應到一個實數

: 資料結構D的初始狀態
: 資料結構D經過個操作後的狀態
: 第個操作的actual cost
: 第個操作的amortized cost

定義

為了滿足

我們定義 , 通常令

例子

[編輯]

堆疊(stack)的平攤分析

[編輯]

我們定義一個堆疊有下列操作

操作(operation) 說明 actual cost
S.push(x) 將一個元素x放入堆疊S中
S.pop() 把堆疊S中最上面的元素取出
S.multi-pop(k) 一次pop k個元素

S.mult-pop(k)的程式碼如下

def multi_pop(k):
	while (not S.empty()) and (k>0):
		S.pop()
		k -= 1

接下來我們分別使用聚集法(aggregate method), 記帳法(Accounting method), 位能法(Potential method)求出"堆疊一個操作的平攤成本是O(1)"

使用聚集法(aggregate method)分析堆疊操作的平攤成本

[編輯]

是S.push(x)的執行次數,是S.pop()的執行次數,是S.multi-pop(k)的執行次數

為總執行次數
操作(operation) actual cost 執行次數
S.push(x)
S.pop()
S.multi-pop(k)

因為一個堆疊S如果是空的,就不能執行pop了,也就是說可以pop或multi-pop的元素個數不會超過S中push進去的元素個數

所以

假設是執行個操作的時間複雜度上限

所以堆疊一個操作的平攤成本為

使用記帳法(Accouting method)分析堆疊操作的平攤成本

[編輯]

我們假設S.push(x), S.pop(), S.multi-pop(k)的amortized cost分別為2, 0, 0,如下表所示

操作(operation) actual cost amortized cost
S.push(x) 1 2
S.pop() 1 0
S.multi-pop(k) 0
Valid Check
證明:
push進入堆疊S的元素會存入credit $1
pop(S), multi-pop(S, k) 會取出這些元素的credit $1

因此每個操作的平攤成本是O(1)


使用位能法(potential method)分析堆疊操作的平攤成本

[編輯]

我們定義位能函數為執行i個操作後,堆疊內的元素個數

,因為堆疊一開始是空的
,因為堆疊的元素個數一定

計算堆疊S每一個操作的平攤成本

操作(operation) 平攤成本(amortized cost)
S.push(x)
S.pop()
S.multi-pop(k)

總平攤成本 ,所以堆疊單一個操作的平攤成本是

動態陣列

[編輯]
動態陣列的平攤分析

考慮一個隨元素個數增加而增長的動態陣列,比如JavaArrayList或者C++std::vector。如果我們的陣列大小從4開始,那麼來向其中增加四個元素的時間就是一個常數。然而,若要將第五個元素加入其中,那麼會花費更多時間,因為我們此時必須要建立一個兩倍於當前陣列大小的陣列(8個元素),把老元素拷貝到新陣列中,然後增加一個新元素。接下來的三次加入操作也同樣會花費常數時間,然後在陣列被填滿後則又需要一輪新的加倍擴充。

一般地,如果我們考慮任意一個任意的n大小的陣列並對其進行n + 1次加入操作。我們注意到,所有的加入操作都是常數時間的,除了最後一個,它會花費時間在大小加倍上。因為我們進行了n + 1次加入操作,我們可以將陣列加倍的時間平攤到所有的加入操作上,因此得到加入操作的平均時間是。它是一個常數。[1]

佇列

[編輯]

使用Ruby實現的佇列,一個先進先出資料結構:

class Queue
  def initialize
    @input = []
    @output = []
  end

  def enqueue(element)
    @input << element
  end

  def dequeue
    if @output.empty?
      while @input.any?
        @output << @input.pop
      end
    end

    @output.pop
  end
end

佇列操作及特性參考佇列條目,enqeue及deqeue操作時間複雜度為常數, 否則,dequeue需要時間將所有元素從輸入數組添加到輸出數組中,其中n是輸入數組的當前長度。 從輸入複製n元素後,我們可以在輸出數組再次為空之前執行n出隊操作,每次操作都需要一個恆定的時間。 因此,我們可以僅在時間執行一系列n出列操作,這意味著每個出列操作的攤銷時間是[2]

或者,我們可以收取將任何項目從輸入數組複製到輸出數組的成本,以及該項目的早期排隊操作。 該計費方案將入隊的攤還時間加倍,但將出列的攤還時間減少到

通常用法

[編輯]
  • 在常見場合,我們把能很好平攤分析的演算法稱為「平攤演算法」。
  • 線上演算法通常使用平攤分析。

參考資料

[編輯]

[3]

  1. ^ 1.0 1.1 1.2 1.3 1.4 Kozen, Dexter. CS 3110 Lecture 20: Amortized Analysis. Cornell University. Spring 2011 [14 March 2015]. (原始內容存檔於2018-10-03). 
  2. ^ Grossman, Dan. CSE332:Data Abstractions (PDF). cs.washington.edu. [2015年3月14日]. (原始內容存檔 (PDF)於2015年4月2日). 
  3. ^ MIT 6.046J Design and Analysis of Algorithms, Spring 2015. MIT. [2018-10-21]. (原始內容存檔於2018-11-25).