在数学里,一个正交坐标系定义为一组正交坐标 q = ( q 1 , q 2 , q 3 , … q n ) {\displaystyle \mathbf {q} =(q_{1},\ q_{2},\ q_{3},\ \dots \ q_{n})} ,其坐标曲面都以直角相交(注意:很多作者采用爱因斯坦记号对坐标标号使用上标并非表示指数)。坐标曲面定义为特定坐标 q i {\displaystyle q_{i}} 的等值曲面,即 q i {\displaystyle q_{i}} 为常数的曲线、曲面或超曲面。例如,三维直角坐标 ( x , y , z ) {\displaystyle (x,\ y,\ z)} 是一种正交坐标系,它的 x {\displaystyle x} 为常数, y {\displaystyle y} 为常数, z {\displaystyle z} 为常数的坐标曲面,都是互相以直角相交的平面,都互相垂直。正交坐标系是曲线坐标系的特殊的但极其常见的形式。
正交坐标时常用来解析一些出现于量子力学、流体动力学、电动力学、热力学等等的偏微分方程。举例而言,选择一个恰当的的正交坐标来解析氢离子 H 2 − {\displaystyle H_{2}\,^{-}} 的波函数或消防水管的喷水,也许会比用直角坐标方便的多。这主要是因为恰当的正交坐标能够与一个问题的对称性相配合,从而促使应用分离变数法来成功的解析关于这问题的方程式。分离变数法是一种数学技巧,专门用来将一个复杂的 n {\displaystyle n} 维问题变为 n {\displaystyle n} 个一维问题。很多问题都可以简化为拉普拉斯方程或亥姆霍兹方程,这些方程式可以用很多种正交坐标来分离。拉普拉斯方程可以在13个正交坐标系中分离(本文列出的14个中圆环坐标系除外),而亥姆霍兹方程可以在11个正交坐标系中分离[1][2]。
正交坐标的度规张量绝对没有非对角项目。换句话说,无穷小距离的平方 d s 2 {\displaystyle ds^{2}} ,可以写为无穷小坐标位移的平方和:
其中, n {\displaystyle n} 是维数,标度因子 h i {\displaystyle h_{i}} 是度规张量的对角元素 g i i {\displaystyle g_{ii}} 的平方根:
这些标度因子可以用来计算一个正交坐标系的微分算子。例如,梯度、拉普拉斯算子、散度、或旋度。
在数学里,存在有各种各样的正交坐标系。应用二维直角坐标系 ( x , y ) {\displaystyle (x,\ y)} 的共形映射方法,可以简易的生成这些正交坐标系。一个复数 z = x + i y {\displaystyle z=x+iy} 的任何全纯函数 w = f ( z ) {\displaystyle w=f(z)} ,其复值的导数,如果不等于零,则会造成一个共形映射。如果答案可以表达为 w = u + i v {\displaystyle w=u+iv} ,则 u {\displaystyle u} 与 v {\displaystyle v} 的等值曲线以直角相交,就如同原本的 x {\displaystyle x} 与 y {\displaystyle y} 的等值曲线以直角相交。
三维与更高维的正交坐标系可以由一个二维正交坐标系生成,只要将二维正交坐标往一个新的坐标轴投射(形成类似圆柱坐标系的坐标系),或者将二维正交坐标绕着其对称轴旋转。可是,也有一些三维正交坐标系,例如椭球坐标系,则不能够用上述方法得到。更一般的正交坐标可以从一些必要的坐标曲面/曲线起步并通过考虑它们的正交轨迹线(英语:Orthogonal trajectory)而得到。
在正交坐标系里,内积的公式仍旧不变:
从前面的距离公式,可以观察出,一个正交坐标 q i {\displaystyle q_{i}} 的无穷小改变 d q i {\displaystyle dq_{i}} ,其相伴的长度是 d s i = h i d q i {\displaystyle ds_{i}=h_{i}dq_{i}} 。因此,一个位移向量的全微分 d r {\displaystyle d\mathbf {r} } 等于
其中, e i {\displaystyle \mathbf {e} _{i}} 是垂直于 q i {\displaystyle q_{i}} 等值曲面的单位向量,指向着 q i {\displaystyle q_{i}} 增值最快的方向,这些单位向量形成了一个局部直角坐标系的坐标轴。
因此,向量 F {\displaystyle \mathbf {F} } 沿着周线 C {\displaystyle \mathbb {C} } 的线积分等于
其中, F i {\displaystyle F_{i}} 是向量 F {\displaystyle \mathbf {F} } 在单位向量 e i {\displaystyle \mathbf {e} _{i}} 方向的分量:
类似地,一个无穷小面积元素是
一个无穷小体积元素是
例如,向量 F {\displaystyle \mathbf {F} } 对于一个曲面 S {\displaystyle \mathbb {S} } 的曲面积分是
直角坐标 ( x , y , z ) {\displaystyle (x,\ y,\ z)} 与球坐标 ( r , θ , ϕ ) {\displaystyle (r,\ \theta ,\phi )} 的变换方程式为
直角坐标的全微分是
所以,无穷小距离的平方是
标度因子是
向量 F {\displaystyle \mathbf {F} } 沿着周线 C {\displaystyle \mathbb {C} } 的线积分等于
向量 F {\displaystyle \mathbf {F} } 对于一个曲面 S {\displaystyle \mathbb {S} } 的曲面积分是
上面表达式可以使用列维-奇维塔符号 ϵ {\displaystyle \epsilon } 的更简洁形式书写,定义 H = h 1 h 2 h 3 {\displaystyle H=h_{1}h_{2}h_{3}} ,并使用爱因斯坦记号,即在同时出现上标和下标的项目上求此项所有可能的总和:
x + i y = f ( u + i v ) {\displaystyle x+iy=f(u+iv)}
除了直角坐标系之外,下表列出其他常见的正交坐标系[3],为了简明性在坐标列中使用了区间符号。
( r , θ , ϕ ) ∈ [ 0 , ∞ ) × [ 0 , π ] × [ 0 , 2 π ) {\displaystyle (r,\theta ,\phi )\in [0,\infty )\times [0,\pi ]\times [0,2\pi )}
( ρ , ϕ , z ) ∈ [ 0 , ∞ ) × [ 0 , 2 π ) × ( − ∞ , ∞ ) {\displaystyle (\rho ,\phi ,z)\in [0,\infty )\times [0,2\pi )\times (-\infty ,\infty )}
( u , v , z ) ∈ ( − ∞ , ∞ ) × [ 0 , ∞ ) × ( − ∞ , ∞ ) {\displaystyle (u,v,z)\in (-\infty ,\infty )\times [0,\infty )\times (-\infty ,\infty )}
( u , v , ϕ ) ∈ [ 0 , ∞ ) × [ 0 , ∞ ) × [ 0 , 2 π ) {\displaystyle (u,v,\phi )\in [0,\infty )\times [0,\infty )\times [0,2\pi )}
( u , v , z ) ∈ [ 0 , ∞ ) × [ 0 , 2 π ) × ( − ∞ , ∞ ) {\displaystyle (u,v,z)\in [0,\infty )\times [0,2\pi )\times (-\infty ,\infty )}
( ξ , η , ϕ ) ∈ [ 0 , ∞ ) × [ 0 , π ] × [ 0 , 2 π ) {\displaystyle (\xi ,\eta ,\phi )\in [0,\infty )\times [0,\pi ]\times [0,2\pi )}
( ξ , η , ϕ ) ∈ [ 0 , ∞ ) × [ − π 2 , π 2 ] × [ 0 , 2 π ) {\displaystyle (\xi ,\eta ,\phi )\in [0,\infty )\times \left[-{\frac {\pi }{2}},{\frac {\pi }{2}}\right]\times [0,2\pi )}
( u , v , z ) ∈ [ 0 , 2 π ) × ( − ∞ , ∞ ) × ( − ∞ , ∞ ) {\displaystyle (u,v,z)\in [0,2\pi )\times (-\infty ,\infty )\times (-\infty ,\infty )}
( u , v , ϕ ) ∈ ( − π , π ] × [ 0 , ∞ ) × [ 0 , 2 π ) {\displaystyle (u,v,\phi )\in (-\pi ,\pi ]\times [0,\infty )\times [0,2\pi )}
( λ , μ , ν ) ν 2 < b 2 < μ 2 < a 2 λ ∈ [ 0 , ∞ ) {\displaystyle {\begin{aligned}&(\lambda ,\mu ,\nu )\\&\nu ^{2}<b^{2}<\mu ^{2}<a^{2}\\&\lambda \in [0,\infty )\end{aligned}}}
( λ , μ , ν ) λ < b 2 < μ < a 2 < ν {\displaystyle {\begin{aligned}&(\lambda ,\mu ,\nu )\\&\lambda <b^{2}<\mu <a^{2}<\nu \end{aligned}}}
其中 ( q 1 , q 2 , q 3 ) = ( λ , μ , ν ) {\displaystyle (q_{1},q_{2},q_{3})=(\lambda ,\mu ,\nu )}
( λ , μ , ν ) λ < c 2 < b 2 < a 2 , c 2 < μ < b 2 < a 2 , c 2 < b 2 < ν < a 2 , {\displaystyle {\begin{aligned}&(\lambda ,\mu ,\nu )\\&\lambda <c^{2}<b^{2}<a^{2},\\&c^{2}<\mu <b^{2}<a^{2},\\&c^{2}<b^{2}<\nu <a^{2},\end{aligned}}}
一个函数 ϕ {\displaystyle \phi } 的梯度朝某个方向 n ^ {\displaystyle {\hat {\mathbf {n} }}} 的分量,等于方向导数 d ϕ d s {\displaystyle {\frac {d\phi }{ds}}} 朝 n ^ {\displaystyle {\hat {\mathbf {n} }}} 方向的值:
其中, d s {\displaystyle ds} 是朝 n ^ {\displaystyle {\hat {\mathbf {n} }}} 方向的无穷小位移。
假若,这 n ^ {\displaystyle {\hat {\mathbf {n} }}} 与正交坐标轴 e ^ i {\displaystyle {\hat {\mathbf {e} }}_{i}} 同方向。那么, d s = h i d q i {\displaystyle ds=h_{i}dq_{i}} 。所以,函数 ϕ {\displaystyle \phi } 的梯度朝 e ^ i {\displaystyle {\hat {\mathbf {e} }}_{i}} 的分量是 ∂ ϕ h i ∂ q i {\displaystyle {\frac {\partial \phi }{h_{i}\partial q_{i}}}} ;也就是说,
取右手边第一个项目,
应用向量恒等式 ∇ ⋅ ( A ϕ ) = ϕ ∇ ⋅ A + A ⋅ ( ∇ ϕ ) {\displaystyle \nabla \cdot (\mathbf {A} \phi )=\phi \nabla \cdot \mathbf {A} +\mathbf {A} \cdot (\nabla \phi )} 与 ∇ ⋅ ( ∇ ϕ 1 × ∇ ϕ 2 ) = 0 {\displaystyle \nabla \cdot (\nabla \phi _{1}\times \nabla \phi _{2})=0} ,可以得到
总合所有项目,
应用向量恒等式 ∇ × ( A ϕ ) = ϕ ∇ × A − A × ( ∇ ϕ ) {\displaystyle \nabla \times (\mathbf {A} \phi )=\phi \nabla \times \mathbf {A} -\mathbf {A} \times (\nabla \phi )} ,
应用向量恒等式 ∇ × ( ∇ ϕ ) = 0 {\displaystyle \nabla \times (\nabla \phi )=0} ,