精确覆盖问题
外观
在一个全集X中若干子集的集合为S,精确覆盖是指,S的子集S*,满足X中的每一个元素在S*中恰好出现一次。[1]
在计算机科学中,精确覆盖问题指找出这样的一种覆盖,或证明其不存在。这是一个NP-完全问题[1],也是卡普的二十一个NP-完全问题之一[2]。
定义
[编辑]满足以下条件的集合为一个精确覆盖:
- S*中任意两个集合没有交集,即X中的元素在S*中出现最多一次
- S*中集合的全集为X,即X中的元素在S*中出现最少一次
合二为一,即X中的元素在S*中出现恰好一次。
举例
[编辑]令 = {N, O, E, P} 是集合X = {1, 2, 3, 4}的一个子集的集合,并满足:
- N = { }
- O = {1, 3}
- E = {2, 4}
- P = {2, 3}.
其中一个子集 {O, E} 是 X的一个精确覆盖,因为 O = {1, 3} 而 E = {2, 4} 的并集恰好是 X = {1, 2, 3, 4}。同理, {N, O, E} 也是 X.的一个精确覆盖。空集并不影响结论。
关系表示
[编辑]通常我们用S的每个子集与X的元素之间包含关系的二元关系来表示精确覆盖问题。
矩阵表示法
[编辑]包含关系可以用一个关系矩阵表示。. 矩阵每行表示S的一个子集,每列表示X中的一个元素。矩阵行列交点元素为1表示对应的元素在对应的集合中,不在则为0.[3]
通过这种矩阵表示法,求一个精确覆盖转化为求矩阵的若干个行的集合,使每列有且仅有一个1。同时,该问题也是精确覆盖的典型例题之一。
下图为其中一个例子:
1 2 3 4 5 6 7 A 1 0 0 1 0 0 1 B 1 0 0 1 0 0 0 C 0 0 0 1 1 0 1 D 0 0 1 0 1 1 0 E 0 1 1 0 0 1 1 F 0 1 0 0 0 0 1
S* = {B, D, F} 便是一个精确覆盖。
图论表示法
[编辑]包含关系也可以用一个二分图表示。
二分图左侧每个节点表示S的每个集合,右侧每个节点表示X的每个元素,而精确覆盖便是一种匹配,满足右侧的每个点恰好有一条边。
求解方法
[编辑]X算法是高德纳提出的解决该问题的算法,而舞蹈链算法(Dancing Links,DLX)算法是X算法在计算机上的一种高效实现。
应用举例
[编辑]参考文献
[编辑]- ^ 1.0 1.1 NP Complete, Exact Cover. [2011-08-18]. (原始内容存档于2011-07-18).
- ^ Stephen Cook. The Complexity of Theorem Proving Procedures. Proceedings of the third annual ACM symposium on Theory of computing. 1971: 151–158. 外部链接存在于
|chapter=
(帮助) - ^ 3.0 3.1 Exact Cover Matrix. [2011-08-18]. (原始内容存档于2011-08-06).