跳转到内容

矩阵的谱

维基百科,自由的百科全书

矩阵的谱(Spectrum of a matrix)是一个数学术语,指一个矩阵特征值集合[1][2][3]一般地,若是有限维向量空间上的线性变换,则它的频谱为一系列标量的集合,满足矩阵不可逆。矩阵特征值之积等于矩阵的行列式,而特征值之和等于矩阵的[4][5][6]。以此观点,可以定义奇异方阵的伪行列式英语pseudo-determinant为其非零特征值的乘积(计算多元常态分布的密度会需要此数值)。

在许多应用中(例如PageRank),会关注特征值绝对值最大的值。有些应用则会关注特征值绝对值最小的值。不过一般而言,矩阵的谱可以提供有关矩阵的一些资讯。

注释

[编辑]
  1. ^ Golub & Van Loan (1996,第310页)
  2. ^ Kreyszig (1972,第273页)
  3. ^ Nering (1970,第270页)
  4. ^ Golub & Van Loan (1996,第310页)
  5. ^ Herstein (1964,第271–272页)
  6. ^ Nering (1970,第115–116页)

参考文献

[编辑]