中性粒細胞胞外陷阱
此條目翻譯品質不佳。 (2024年7月7日) |
中性粒細胞胞外誘捕器(NET)是胞外纖維網絡,主要由中性粒細胞的DNA組成,與病原體結合。[2]中性粒細胞是免疫系統抵禦感染的第一道防線,通常被認為通過兩種策略殺死入侵的病原體:吞噬微生物和分泌抗微生物劑。 在2004年,它被確定了新的第三個功能:生產及形成NET。NET允許中性粒細胞殺死細胞外病原體,同時最大限度地減少對宿主細胞的損害。[3]在體外用藥物佛波醇肉豆蔻酸酯(PMA)、白細胞介素-8(IL-8)或脂多糖(LPS)激活後,中性粒細胞會通過活性過程釋放顆粒蛋白和染色質以形成稱為NET的細胞外原纖維基質。 [2]
結構和組成
[編輯]高解像度掃描電子顯微鏡顯示NET由DNA和球狀蛋白質結構域組成,直徑分別為15至17納米和25納米。這些將會聚集成直徑為50納米的較大螺紋。[2]然而,在流動條件下,NET可以形成更大的結構,長度和寬度達到數百納米。 [4]
免疫熒光分析證實NET含有來自嗜天青顆粒(中性粒細胞彈性蛋白酶、組織蛋白酶G和髓過氧化物酶)、特定顆粒(乳鐵蛋白)、三級顆粒(明膠酶)和細胞質的蛋白質;然而,NET中不存在CD63 、肌動蛋白、微管蛋白和各種其他細胞質蛋白。[2][5]
抗微生物活性
[編輯]NET使用對DNA較為高親和的抗菌蛋白(如中性粒細胞彈性蛋白酶、組織蛋白酶G和組蛋白)解除病原體的武裝。 [6] NET提供高濃度的抗微生物成分,並在細胞外結合、解除和殺死微生物,而與吞噬細胞的攝取無關。除了它們的抗菌特性外,NET還可以作為防止病原體進一步傳播的物理屏障。此外,將顆粒蛋白輸送到 NET中可以阻止蛋白酶等潛在的有害蛋白擴散並在炎症部位附近的組織中引起損傷。NET的形成也被證明可以增強巨噬細胞對多種細菌病原體的殺菌活性。[7][8]
最近研究表明,不僅是細菌,致病性的真菌(如白色念珠菌)也會誘導中性粒細胞形成 NET,捕獲並殺死白色念珠菌的菌絲和酵母形式的細胞。 [9] NET也被證明與兒童惡性瘧原蟲感染有關。[10]
雖然最初提出NET會在細菌或酵母菌感染部位的組織中形成,但NET也被證明會在敗血症期間在血管內形成(特別是在肺部的毛細血管和肝竇)。血管內NET的形成受到嚴格控制並受血小板調節,血小板通過血小板TLR4感知嚴重感染,然後結合併激活中性粒細胞形成 NET。血小板誘導的NET形成非常迅速(在幾分鐘內),可能會或不會導致中性粒細胞死亡。[11]在血管中形成的NET可以在循環細菌通過血管時捕獲它們。在流動下細菌的捕獲已在體外流室中直接成像,活體顯微鏡顯示細菌捕獲發生在肝竇和肺毛細血管(血小板與中性粒細胞結合的部位)中。[4]
NETosis
[編輯]NET的激活和釋放,或NETosis,是一個動態過程,可以有兩種形式:自殺和重要NETosis(vital NETosis)。總體而言,這兩種NETosis過程的許多關鍵組成部分是相似的,但是在刺激、時間和最終結果方面存在關鍵差異。[12]
激活途徑
[編輯]完整的NETosis激活途徑仍在研究中,但一些關鍵蛋白質已被確定,並且該途徑的全貌正在逐漸顯現。該過程被認為始於,通過活性氧類為中介,激活蛋白質-精氨酸脫亞胺酶4(PADI4)的NADPH氧化酶。 PAD4負責中性粒細胞中組蛋白的瓜氨酸化,導致染色質去濃縮化。[12]還有一種不依賴NADPH氧化酶的NETosis形式,僅依賴於線粒體衍生的活性氧類。[13]隨後,髓氧化物酶(MPO)和中性粒細胞彈性蛋白酶(NE)為代表的嗜天青顆粒將會進入細胞核並進行進一步的去冷凝過程,最終導致核膜破裂。未濃縮的染色質進入細胞質,其中額外的顆粒和細胞質蛋白被添加到早期NET中。該過程的結果取決於激活的NETosis途徑。[12]
自殺性NETosis
[編輯]2007年的一項研究首次描述了自殺性NETosis。該研究指出,NET的釋放導致中性粒細胞死亡的途徑與細胞凋亡或壞死不同。[14]在自殺性NETosis中,細胞內NET形成之後是細胞膜破裂,將其釋放到細胞外空間。這種NETosis途徑可以通過激活toll樣受體 (TLR)、Fc受體和具有各種配體(如抗體、PMA等)的補體受體來啟動。[12][15]目前的理解是,在這些受體激活後,下游信號傳導導致鈣從內質網釋放。鈣的這種細胞內流入反過來激活NADPH氧化酶,導致如上所述的NETosis途徑的激活。[15]值得注意的是,即使有高水平的PMA刺激,自殺性NETosis也可能需要數小時,而vital NETosis可以在幾分鐘內完成。[12]
重要NETosis(vital NETosis)
[編輯]Vital NETosis可由細菌性脂多糖(LPS)、其他「細菌產物、TLR4激活的血小板或與TLR2配體串聯的補體蛋白」刺激。[12]通過細胞核的起泡,vital NETosis成為了可能,從而產生一個充滿DNA的囊泡,該囊泡被胞吐並保持質膜完整。[12]它的快速形成和釋放不會導致中性粒細胞死亡。已經注意到,中性粒細胞可以在vital NETosis後繼續吞噬和殺死微生物,突出了中性粒細胞的抗微生物多功能性。[15]
調節
[編輯]NET的形成受脂氧合酶途徑的調節——在某些形式的激活(包括與細菌接觸)期間,花生四烯酸5-脂氧合酶形成抑制NET形成的5-HETE-磷脂。[16]實驗室的實驗證據表明,NET被巨噬細胞吞噬並降解。[17]
NET相關的宿主傷害
[編輯]NET也可能對宿主產生有害影響,因為組蛋白複合物的細胞外暴露可能在系統性紅斑狼瘡等自身免疫性疾病的發展過程中發揮作用。[18]NET也可能在炎症性疾病中發揮作用,因為NET可以在子癇前症中發現,這是一種與妊娠相關的炎症性疾病,已知中性粒細胞被激活。[19]在炎症性腸病和潰瘍性結腸炎患者的結腸黏膜中也有NET的報告。[20]NET還與感染惡性瘧原蟲瘧疾的兒童產生IgG抗核雙鏈DNA抗體有關。[10]在癌症患者中也發現了NET。[21]臨床前研究表明,NET共同負責與癌症相關的病理,如血栓形成、器官衰竭和轉移形成。[22]
NETs 被描述為癌症轉移的潛在促進者。它們可能通過各種機制增強轉移擴散。[23]研究表明,NETs 可以響應感染和手術應激而形成,這可能有助於轉移。例如,一項利用盲腸結紮穿刺 (CLP) 模型的研究表明,CLP 誘導的 NET 可增強循環腫瘤細胞的捕獲並促進腫瘤細胞向肝臟轉移。[24] 具體來說,當 CLP 24 小時後通過脾內途徑注射 Lewis 肺癌細胞 (LLC-H59) 時,與假手術對照相比,小鼠表現出更多的轉移瘤。活體成像顯示 NET 與肝臟和肺微血管中的腫瘤細胞共存,促進這些區域的腫瘤細胞被捕獲。[24]在沒有感染或手術干預的情況下,癌細胞也可以誘導 NETs。[23]在乳腺癌小鼠模型中,發現與侵襲性較低的細胞相比,轉移性癌細胞在誘導 NET 形成方面更有效。此外,在乳腺癌患者的轉移性病灶中檢測到較高水平的 NET,尤其是那些以其侵襲性進展而聞名的三陰性乳腺癌患者。[25]
NET已被證明有助於HIV/SIV的發病機制。 NET能夠捕獲HIV病毒粒子並摧毀它們。[26]抗病毒藥物可以在HIV/SIV的整個病程中,減少NET產生及增加。此外,NET能夠捕獲和殺死各種免疫細胞群,例如CD4+和 CD8+T 細胞、B細胞和單核細胞。這種效應不僅見於血液中的中性粒細胞,也見於各種組織,如腸道、肺、肝臟和血管。 NET可能通過捕獲血小板和表達組織因子導致HIV的高凝狀態。[27]
NET在血栓形成中扮演重要角色,並且與中風有關。[28][29][30]
這些觀察結果表明,NET可能在感染性、炎症性和血栓性疾病的發病機制中發揮重要作用。[31][32][33]
由於NET的帶電和「粘性」性質,它們可能會通過增加痰液粘度而成為囊性纖維化患者的困擾。治療的重點是分解痰中的DNA,痰中主要由宿主NET DNA組成。
發表在美國醫學會心臟病學雜誌(JAMA Cardiology)上的一項小型研究表明,NET 在發生ST 段抬高心肌梗塞的COVID-19患者中發揮了重要作用。[34]
參考文獻
[編輯]- ^ Urban, Constantin F.; Ermert, David; Schmid, Monika; Abu-Abed, Ulrike; Goosmann, Christian; Nacken, Wolfgang; Brinkmann, Volker; Jungblut, Peter R.; Zychlinsky, Arturo; Levitz, Stuart M. Neutrophil Extracellular Traps Contain Calprotectin, a Cytosolic Protein Complex Involved in Host Defense against Candida albicans. PLOS Pathogens. 30 October 2009, 5 (10): e1000639. PMC 2763347 . PMID 19876394. doi:10.1371/journal.ppat.1000639.
- ^ 2.0 2.1 2.2 2.3 Brinkmann, Volker; Ulrike Reichard; Christian Goosmann; Beatrix Fauler; Yvonne Uhlemann; David S. Weiss; Yvette Weinrauch; Arturo Zychlinsky. Neutrophil Extracellular Traps Kill Bacteria. Science. 2004-03-05, 303 (5663): 1532–1535. Bibcode:2004Sci...303.1532B. PMID 15001782. S2CID 21628300. doi:10.1126/science.1092385.
- ^ Nirmala GJ and Lopus M (2020) Cell death mechanisms in eukaryotes. Cell Biol Toxicol, 36, 145–164. doi: /10.1007/s10565-019-09496-2. PMID 31820165
- ^ 4.0 4.1 Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, Keys EM, Allen-Vercoe E, Devinney R, Doig CJ, Green FH, Kubes P. Platelet Toll-Like Receptor-4 Activates Neutrophil Extracellular Traps to Ensnare Bacteria in Endotoxemic and Septic Blood. Nature Medicine. 2007, 13 (4): 463–9. PMID 17384648. S2CID 22372863. doi:10.1038/nm1565.
- ^ Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, Brinkmann V, Jungblut PR, Zychlinsky A. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLOS Pathogens. 2009, 5 (10): e1000639. PMC 2763347 . PMID 19876394. doi:10.1371/journal.ppat.1000639.
- ^ Thomas MP, Whangbo J, McCrossan G, et al. Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins. Journal of Immunology. June 2014, 192 (11): 5390–7. PMC 4041364 . PMID 24771851. doi:10.4049/jimmunol.1303296.
- ^ Monteith, Andrew J.; Miller, Jeanette M.; Maxwell, C. Noel; Chazin, Walter J.; Skaar, Eric P. Neutrophil extracellular traps enhance macrophage killing of bacterial pathogens. Science Advances. September 2021, 7 (37): eabj2101. Bibcode:2021SciA....7J2101M. PMC 8442908 . PMID 34516771. doi:10.1126/sciadv.abj2101 (英語).
- ^ Monteith, Andrew J.; Miller, Jeanette M.; Beavers, William N.; Maloney, K. Nichole; Seifert, Erin L.; Hajnoczky, Gyorgy; Skaar, Eric P. Mitochondrial calcium uniporter affects neutrophil bactericidal activity during Staphylococcus aureus infection. Infection and Immunity. 2021-12-06: IAI.00551–21 [2022-09-14]. ISSN 0019-9567. PMID 34871043. S2CID 244922139. doi:10.1128/IAI.00551-21. (原始內容存檔於2022-04-16) (英語).
- ^ Urban, CF; Reichard U; Brinkmann V; Zychlinsky A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cellular Microbiology. April 2006, 8 (4): 668–76. PMID 16548892. doi:10.1111/j.1462-5822.2005.00659.x .
- ^ 10.0 10.1 Baker VS, Imade GE, Molta NB, Tawde P, Pam SD, Obadofin MO, Sagay SA, Egah DZ, Iya D, Afolabi BB, Baker M, Ford K, Ford R, Roux KH, Keller TC. Cytokine-associated neutrophil extracellular traps and antinuclear antibodies in Plasmodium falciparum infected children under six years of age. Malaria Journal. February 2008, 7 (41): 41. PMC 2275287 . PMID 18312656. doi:10.1186/1475-2875-7-41.
- ^ Caudrillier, Axelle; Kessenbrock, Kai; Gilliss, Brian; Nguyen, John; Marques, Marisa; Monestier, Marc; Toy, Pearl; Werb, Zena; Looney, Mark. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. The Journal of Clinical Investigation. 2 Jul 2012, 122 (7): 2661–71. PMC 3386815 . PMID 22684106. doi:10.1172/JCI61303.
- ^ 12.0 12.1 12.2 12.3 12.4 12.5 12.6 Jorch, Selina K.; Kubes, Paul. An emerging role for neutrophil extracellular traps in noninfectious disease. Nature Medicine. March 2017, 23 (3): 279–287. ISSN 1078-8956. PMID 28267716. S2CID 8976515. doi:10.1038/nm.4294 (英語).
- ^ Douda, David Nobuhiro; Khan, Meraj A.; Grasemann, Hartmut; Palaniyar, Nades. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proceedings of the National Academy of Sciences. 2015-03-03, 112 (9): 2817–2822. Bibcode:2015PNAS..112.2817D. PMC 4352781 . PMID 25730848. doi:10.1073/pnas.1414055112 .
- ^ Fuchs, Tobias A.; Abed, Ulrike; Goosmann, Christian; Hurwitz, Robert; Schulze, Ilka; Wahn, Volker; Weinrauch, Yvette; Brinkmann, Volker; Zychlinsky, Arturo. Novel cell death program leads to neutrophil extracellular traps. The Journal of Cell Biology. 2007-01-15, 176 (2): 231–241. ISSN 0021-9525. PMC 2063942 . PMID 17210947. doi:10.1083/jcb.200606027.
- ^ 15.0 15.1 15.2 Yang, Hang; Biermann, Mona Helena; Brauner, Jan Markus; Liu, Yi; Zhao, Yi; Herrmann, Martin. New Insights into Neutrophil Extracellular Traps: Mechanisms of Formation and Role in Inflammation. Frontiers in Immunology. 2016-08-12, 7: 302. ISSN 1664-3224. PMC 4981595 . PMID 27570525. doi:10.3389/fimmu.2016.00302 .
- ^ Clark, SR; Guy CJ; Scurr MJ; Taylor PR; Kift-Morgan AP; Hammond VJ; Thomas CP; Coles B; Roberts GW; Eberl M; Jones SA; Topley N; Kotecha S; O'Donnell VB. Esterified eicosanoids are acutely generated by 5-lipoxygenase in primary human neutrophils and in human and murine infection. Blood. 2011, 117 (6): 2033–43. PMC 3374621 . PMID 21177434. doi:10.1182/blood-2010-04-278887.
- ^ Farrera, c; Fadeel B. Macrophage Clearance of Neutrophil Extracellular Traps Is a Silent Process. Journal of Immunology. 2013, 191 (5): 2647–56. PMID 23904163. doi:10.4049/jimmunol.1300436 .
- ^ Hakkim, Abdul; Fürnrohr, Barbara G.; Amann, Kerstin; Laube, Britta; Abed, Ulrike Abu; Brinkmann, Volker; Herrmann, Martin; Voll, Reinhard E.; Zychlinsky, Arturo. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proceedings of the National Academy of Sciences of the United States of America. 2010-05-25, 107 (21) [2022-09-18]. ISSN 0027-8424. PMC 2906830 . PMID 20439745. doi:10.1073/pnas.0909927107. (原始內容存檔於2022-10-05).
- ^ Gupta, AK; Hasler P; Holzgreve W; Gebhardt S; Hahn S. Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their presence in preeclampsia. Hum Immunol. November 2005, 66 (11): 1146–54. PMID 16571415. doi:10.1016/j.humimm.2005.11.003.
- ^ Bennike, Tue Bjerg; Carlsen, Thomas Gelsing; Ellingsen, Torkell; Bonderup, Ole Kristian; Glerup, Henning; Bøgsted, Martin; Christiansen, Gunna; Birkelund, Svend; Stensballe, Allan. Neutrophil Extracellular Traps in Ulcerative Colitis. Inflammatory Bowel Diseases. 2015, 21 (9): 2052–2067. PMC 4603666 . PMID 25993694. doi:10.1097/mib.0000000000000460.
- ^ Rayes, Roni F.; Mouhanna, Jack G.; Nicolau, Ioana; Bourdeau, France; Giannias, Betty; Rousseau, Simon; Quail, Daniela; Walsh, Logan; Sangwan, Veena; Bertos, Nicholas; Cools-Lartigue, Jonathan. Primary tumors induce neutrophil extracellular traps with targetable metastasis-promoting effects. JCI Insight. 2019-08-22, 4 (16): e128008. ISSN 2379-3708. PMC 6777835 . PMID 31343990. doi:10.1172/jci.insight.128008 (英語).
- ^ Cedervall, J.; Zhang, Y.; Olsson, A.-K. Tumor-Induced NETosis as a Risk Factor for Metastasis and Organ Failure. Cancer Research. 2016-08-01, 76 (15): 4311–4315. ISSN 0008-5472. PMID 27402078. doi:10.1158/0008-5472.CAN-15-3051 (英語).
- ^ 23.0 23.1 Herre, Melanie; Cedervall, Jessica; Mackman, Nigel; Olsson, Anna-Karin. Neutrophil extracellular traps in the pathology of cancer and other inflammatory diseases. Physiological Reviews. 2023-01-01, 103 (1). ISSN 0031-9333. PMC 9576172 . PMID 35951483. doi:10.1152/physrev.00062.2021 (英語).
- ^ 24.0 24.1 Cools-Lartigue, Jonathan; Spicer, Jonathan; McDonald, Braedon; Gowing, Stephen; Chow, Simon; Giannias, Betty; Bourdeau, France; Kubes, Paul; Ferri, Lorenzo. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. Journal of Clinical Investigation. 2013-08-01, 123 (8). ISSN 0021-9738. PMC 3726160 . PMID 23863628. doi:10.1172/JCI67484 (英語).
- ^ Bianchini, Giampaolo; Balko, Justin M.; Mayer, Ingrid A.; Sanders, Melinda E.; Gianni, Luca. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nature Reviews Clinical Oncology. 2016-11, 13 (11). ISSN 1759-4774. PMC 5461122 . PMID 27184417. doi:10.1038/nrclinonc.2016.66 (英語).
- ^ Saitoh, Tatsuya; Komano, Jun; Saitoh, Yasunori; Misawa, Takuma; Takahama, Michihiro; Kozaki, Tatsuya; Uehata, Takuya; Iwasaki, Hidenori; Omori, Hiroko. Neutrophil Extracellular Traps Mediate a Host Defense Response to Human Immunodeficiency Virus-1. Cell Host & Microbe. July 2012, 12 (1): 109–116. ISSN 1931-3128. PMID 22817992. doi:10.1016/j.chom.2012.05.015 .
- ^ Sivanandham, Ranjit; Brocca-Cofano, Egidio; Krampe, Noah; Falwell, Elizabeth; Kilapandal Venkatraman, Sindhuja Murali; Ribeiro, Ruy M.; Apetrei, Cristian; Pandrea, Ivona. Neutrophil extracellular trap production contributes to pathogenesis in SIV-infected nonhuman primates. Journal of Clinical Investigation. 2018-09-11, 128 (11): 5178–5183. ISSN 1558-8238. PMC 6205390 . PMID 30204591. doi:10.1172/jci99420 (英語).
- ^ Laridan, Elodie; Denorme, Frederik; Desender, Linda; François, Olivier; Andersson, Tommy; Deckmyn, Hans; Vanhoorelbeke, Karen; De Meyer, Simon F. Neutrophil extracellular traps in ischemic stroke thrombi. Annals of Neurology. August 2, 2017, 82 (2): 223–232. PMID 28696508. S2CID 205347011. doi:10.1002/ana.24993.
- ^ Ducroux, Celina; Di Meglio, Lucas; Loyau, Stephane; Delbosc, Sandrine; Boisseau, William; Deschildre, Catherine; Ben Maacha, Malek; Blanc, Raphael; Redjem, Hocine; Ciccio, Gabriele; Smajda, Stanislas. Thrombus Neutrophil Extracellular Traps Content Impair tPA-Induced Thrombolysis in Acute Ischemic Stroke. Stroke. March 2, 2018, 49 (3): 754–757. PMID 29438080. doi:10.1161/STROKEAHA.117.019896 .
- ^ Vallés, Juana; Lago, Aída; Santos, María Teresa; Latorre, Ana María; Tembl, José I.; Salom, Juan B.; Nieves, Candela; Moscardó, Antonio. Neutrophil extracellular traps are increased in patients with acute ischemic stroke: prognostic significance. Thrombosis and Haemostasis. October 5, 2017, 117 (10): 1919–1929. PMID 28837206. doi:10.1160/TH17-02-0130.
- ^ Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. Sep 7, 2010, 107 (36): 15880–5. Bibcode:2010PNAS..10715880F. PMC 2936604 . PMID 20798043. doi:10.1073/pnas.1005743107 .
- ^ Brill A, Fuchs TA, Savchenko AS, Thomas GM, Martinod K, De Meyer SF, Bhandari AA, Wagner DD. Neutrophil Extracellular Traps Promote Deep Vein Thrombosis in Mice. Journal of Thrombosis and Haemostasis. Nov 1, 2011, 10 (1): 136–144. PMC 3319651 . PMID 22044575. doi:10.1111/j.1538-7836.2011.04544.x.
- ^ Borissoff, JI; ten Cate, H. From neutrophil extracellular traps release to thrombosis: an overshooting host-defense mechanism?. Journal of Thrombosis and Haemostasis. September 2011, 9 (9): 1791–4. PMID 21718435. S2CID 5368241. doi:10.1111/j.1538-7836.2011.04425.x.
- ^ Blasco, Ana; Coronado, María-José; Hernández-Terciado, Fernando; Martín, Paloma; Royuela, Ana; Ramil, Elvira; García, Diego; Goicolea, Javier; Del Trigo, María; Ortega, Javier; Escudier, Juan M. Assessment of Neutrophil Extracellular Traps in Coronary Thrombus of a Case Series of Patients With COVID-19 and Myocardial Infarction. JAMA Cardiology. 2020-12-29, 6 (4): 469. ISSN 2380-6583. PMC 7772744 . PMID 33372956. doi:10.1001/jamacardio.2020.7308 (英語).