Meijer G-函數 是荷蘭數學家梅耶爾 引入的一種特殊函數 。它是廣義超幾何函數 的推廣,絕大多數的特殊函數都可以用 Meijer G -函數表示出來。
廣義超幾何函數有下列一般的積分表達式(參見相關小節 ):
(
∏
k
=
1
p
Γ
(
a
k
)
/
∏
k
=
1
q
Γ
(
b
k
)
)
p
F
q
[
a
1
a
2
…
a
p
b
1
b
2
…
b
q
;
z
]
=
1
2
π
i
∫
C
(
∏
k
=
1
p
Γ
(
a
k
+
s
)
/
∏
k
=
1
q
Γ
(
b
k
+
s
)
)
Γ
(
−
s
)
(
−
z
)
s
d
s
{\displaystyle \left(\prod _{k=1}^{p}\Gamma (a_{k})\right/\left.\prod _{k=1}^{q}\Gamma (b_{k})\right)\,{}_{p}F_{q}\left[{\begin{matrix}a_{1}&a_{2}&\ldots &a_{p}\\b_{1}&b_{2}&\ldots &b_{q}\end{matrix}};z\right]={\frac {1}{2\pi i}}\int _{C}\left(\prod _{k=1}^{p}\Gamma (a_{k}+s)\right/\left.\prod _{k=1}^{q}\Gamma (b_{k}+s)\right)\Gamma (-s)(-z)^{s}\mathrm {d} s}
其中積分路徑 C 視參數 p , q 的相對大小而定。上面的積分表達式具有 Mellin 逆變換 的形式。
Meijer-G 函數是上面積分表達式的一個推廣,它的定義為:
G
p
,
q
m
,
n
[
a
1
a
2
…
a
p
b
1
b
2
…
b
q
;
z
]
=
1
2
π
i
∫
C
z
s
(
∏
k
=
1
n
Γ
(
1
−
a
k
+
s
)
/
∏
k
=
m
+
1
q
Γ
(
1
−
b
k
+
s
)
)
/
(
∏
k
=
n
+
1
p
Γ
(
a
k
−
s
)
/
∏
k
=
1
m
Γ
(
b
k
−
s
)
)
d
s
{\displaystyle G_{p,q}^{m,n}\left[{\begin{matrix}a_{1}&a_{2}&\ldots &a_{p}\\b_{1}&b_{2}&\ldots &b_{q}\end{matrix}};z\right]={\frac {1}{2\pi i}}\int _{C}z^{s}\left.\left(\prod _{k=1}^{n}\Gamma (1-a_{k}+s)\right/\left.\prod _{k=m+1}^{q}\Gamma (1-b_{k}+s)\right)\right/\left(\prod _{k=n+1}^{p}\Gamma (a_{k}-s)\right/\left.\prod _{k=1}^{m}\Gamma (b_{k}-s)\right)\mathrm {d} s}
其中積分路徑 C 視參數的相對大小而定[ 注 1] 。但是,為了保證至少一條積分路徑有定義,要求
a
k
−
b
l
∉
Z
+
,
∀
k
=
1
,
2
,
…
,
n
;
l
=
1
,
2
,
…
,
m
{\displaystyle a_{k}-b_{l}\notin \mathbb {Z} ^{+},\quad \forall k=1,2,\dots ,n;l=1,2,\dots ,m}
在書寫 Meijer-G 函數時要注意,上標中的第一個參數和下標中的第二個參數對應的是 b k ,而上標中的第二個參數和下標中的第一個參數對應的是 a k 。
對比上述兩式可以得到廣義超幾何函數和 Meijer-G 函數的關係:
∏
k
=
1
p
Γ
(
a
k
)
∏
k
=
1
q
Γ
(
b
k
)
p
F
q
[
a
1
a
2
…
a
p
b
1
b
2
…
b
q
;
z
]
=
G
p
,
q
+
1
1
,
p
[
1
−
a
1
1
−
a
2
…
1
−
a
p
0
1
−
b
1
…
1
−
b
q
;
−
z
]
=
G
q
+
1
,
p
p
,
1
[
1
b
1
…
b
q
a
1
a
2
…
a
p
;
−
1
z
]
{\displaystyle {\begin{array}{cl}&{\frac {\prod _{k=1}^{p}\Gamma (a_{k})}{\prod _{k=1}^{q}\Gamma (b_{k})}}\,{}_{p}F_{q}\left[{\begin{matrix}a_{1}&a_{2}&\ldots &a_{p}\\b_{1}&b_{2}&\ldots &b_{q}\end{matrix}};z\right]\\=&G_{p,q+1}^{1,p}\left[{\begin{matrix}1-a_{1}&1-a_{2}&\ldots &1-a_{p}\\0&1-b_{1}&\ldots &1-b_{q}\end{matrix}};-z\right]\\=&G_{q+1,p}^{p,1}\left[{\begin{matrix}1&b_{1}&\ldots &b_{q}\\a_{1}&a_{2}&\ldots &a_{p}\end{matrix}};-{\frac {1}{z}}\right]\end{array}}}
和廣義超幾何函數一樣,如果上下兩個向量組在合適的位置有相同的元素,則 Meijer-G 函數可以降階,此處不再贅述。
Meijer-G 函數的導函數 具有下列性質:
z
h
d
h
d
z
h
G
p
,
q
m
,
n
(
a
p
b
q
|
z
)
=
G
p
+
1
,
q
+
1
m
,
n
+
1
(
0
,
a
p
b
q
,
h
|
z
)
=
(
−
1
)
h
G
p
+
1
,
q
+
1
m
+
1
,
n
(
a
p
,
0
h
,
b
q
|
z
)
,
{\displaystyle z^{h}{\frac {\mathrm {d} ^{h}}{\mathrm {d} z^{h}}}\;G_{p,q}^{\,m,n}\!\left(\left.{\begin{matrix}\mathbf {a_{p}} \\\mathbf {b_{q}} \end{matrix}}\;\right|\,z\right)=G_{p+1,\,q+1}^{\,m,\,n+1}\!\left(\left.{\begin{matrix}0,\mathbf {a_{p}} \\\mathbf {b_{q}} ,h\end{matrix}}\;\right|\,z\right)=(-1)^{h}\;G_{p+1,\,q+1}^{\,m+1,\,n}\!\left(\left.{\begin{matrix}\mathbf {a_{p}} ,0\\h,\mathbf {b_{q}} \end{matrix}}\;\right|\,z\right),}
注意 h 可以取任意整數值,取負數時表示不定積分 。
另一方面,
z
ρ
G
p
,
q
m
,
n
(
a
p
b
q
|
z
)
=
G
p
,
q
m
,
n
(
a
p
+
ρ
b
q
+
ρ
|
z
)
,
{\displaystyle z^{\rho }\;G_{p,q}^{\,m,n}\!\left(\left.{\begin{matrix}\mathbf {a_{p}} \\\mathbf {b_{q}} \end{matrix}}\;\right|\,z\right)=G_{p,q}^{\,m,n}\!\left(\left.{\begin{matrix}\mathbf {a_{p}} +\rho \\\mathbf {b_{q}} +\rho \end{matrix}}\;\right|\,z\right),}
G
p
,
q
m
,
n
(
a
p
b
q
|
z
)
=
G
q
,
p
n
,
m
(
1
−
b
q
1
−
a
p
|
z
−
1
)
,
{\displaystyle G_{p,q}^{\,m,n}\!\left(\left.{\begin{matrix}\mathbf {a_{p}} \\\mathbf {b_{q}} \end{matrix}}\;\right|\,z\right)=G_{q,p}^{\,n,m}\!\left(\left.{\begin{matrix}1-\mathbf {b_{q}} \\1-\mathbf {a_{p}} \end{matrix}}\;\right|\,z^{-1}\right),}
(
z
d
d
z
−
a
1
+
1
)
G
p
,
q
m
,
n
(
a
p
b
q
|
z
)
=
G
p
,
q
m
,
n
(
a
1
−
1
,
a
2
,
…
,
a
p
b
q
|
z
)
n
≥
1.
{\displaystyle \left(z{\frac {\mathrm {d} }{\mathrm {d} z}}-a_{1}+1\right)\;G_{p,q}^{\,m,n}\!\left(\left.{\begin{matrix}\mathbf {a_{p}} \\\mathbf {b_{q}} \end{matrix}}\;\right|\,z\right)=G_{p,q}^{\,m,n}\!\left(\left.{\begin{matrix}a_{1}-1,a_{2},\dots ,a_{p}\\\mathbf {b_{q}} \end{matrix}}\;\right|\,z\right)\quad n\geq 1.}
(
a
p
−
z
d
d
z
−
1
)
G
p
,
q
m
,
n
(
a
p
b
q
|
z
)
=
G
p
,
q
m
,
n
(
a
1
,
a
2
,
…
,
a
p
−
1
b
q
|
z
)
n
≤
p
−
1.
{\displaystyle \left(a_{p}-z{\frac {\mathrm {d} }{\mathrm {d} z}}-1\right)\;G_{p,q}^{\,m,n}\!\left(\left.{\begin{matrix}\mathbf {a_{p}} \\\mathbf {b_{q}} \end{matrix}}\;\right|\,z\right)=G_{p,q}^{\,m,n}\!\left(\left.{\begin{matrix}a_{1},a_{2},\dots ,a_{p}-1\\\mathbf {b_{q}} \end{matrix}}\;\right|\,z\right)\quad n\leq p-1.}
(
z
d
d
z
−
b
q
)
G
p
,
q
m
,
n
(
a
p
b
q
|
z
)
=
G
p
,
q
m
,
n
(
a
p
b
1
,
b
2
,
…
,
b
q
+
1
|
z
)
m
≤
q
−
1.
{\displaystyle \left(z{\frac {\mathrm {d} }{\mathrm {d} z}}-b_{q}\right)\;G_{p,q}^{\,m,n}\!\left(\left.{\begin{matrix}\mathbf {a_{p}} \\\mathbf {b_{q}} \end{matrix}}\;\right|\,z\right)=G_{p,q}^{\,m,n}\!\left(\left.{\begin{matrix}\mathbf {a_{p}} \\b_{1},b_{2},\dots ,b_{q}+1\end{matrix}}\;\right|\,z\right)\quad m\leq q-1.}
(
b
1
−
z
d
d
z
)
G
p
,
q
m
,
n
(
a
p
b
q
|
z
)
=
G
p
,
q
m
,
n
(
a
p
b
1
+
1
,
b
2
,
…
,
b
q
|
z
)
m
≥
1.
{\displaystyle \left(b_{1}-z{\frac {\mathrm {d} }{\mathrm {d} z}}\right)\;G_{p,q}^{\,m,n}\!\left(\left.{\begin{matrix}\mathbf {a_{p}} \\\mathbf {b_{q}} \end{matrix}}\;\right|\,z\right)=G_{p,q}^{\,m,n}\!\left(\left.{\begin{matrix}\mathbf {a_{p}} \\b_{1}+1,b_{2},\dots ,b_{q}\end{matrix}}\;\right|\,z\right)\quad m\geq 1.}
上面的式子都可以直接由定義得到。
由
Γ
(
1
−
u
+
s
)
Γ
(
1
−
v
+
s
)
=
(
−
1
)
u
−
v
Γ
(
v
−
s
)
Γ
(
u
−
s
)
,
u
−
v
∈
Z
{\displaystyle {\frac {\Gamma (1-u+s)}{\Gamma (1-v+s)}}=(-1)^{u-v}{\frac {\Gamma (v-s)}{\Gamma (u-s)}},\quad u-v\in \mathbb {Z} }
又有
G
p
+
2
,
q
m
,
n
+
1
(
α
,
a
p
,
α
′
b
q
|
z
)
=
(
−
1
)
α
′
−
α
G
p
+
2
,
q
m
,
n
+
1
(
α
′
,
a
p
,
α
b
q
|
z
)
,
n
≤
p
,
α
′
−
α
∈
Z
,
{\displaystyle G_{p+2,\,q}^{\,m,\,n+1}\!\left(\left.{\begin{matrix}\alpha ,\mathbf {a_{p}} ,\alpha '\\\mathbf {b_{q}} \end{matrix}}\;\right|\,z\right)=(-1)^{\alpha '-\alpha }\;G_{p+2,\,q}^{\,m,\,n+1}\!\left(\left.{\begin{matrix}\alpha ',\mathbf {a_{p}} ,\alpha \\\mathbf {b_{q}} \end{matrix}}\;\right|\,z\right),\quad n\leq p,\;\alpha '-\alpha \in \mathbb {Z} ,}
G
p
,
q
+
2
m
+
1
,
n
(
a
p
β
,
b
q
,
β
′
|
z
)
=
(
−
1
)
β
′
−
β
G
p
,
q
+
2
m
+
1
,
n
(
a
p
β
′
,
b
q
,
β
|
z
)
,
m
≤
q
,
β
′
−
β
∈
Z
,
{\displaystyle G_{p,\,q+2}^{\,m+1,\,n}\!\left(\left.{\begin{matrix}\mathbf {a_{p}} \\\beta ,\mathbf {b_{q}} ,\beta '\end{matrix}}\;\right|\,z\right)=(-1)^{\beta '-\beta }\;G_{p,\,q+2}^{\,m+1,\,n}\!\left(\left.{\begin{matrix}\mathbf {a_{p}} \\\beta ',\mathbf {b_{q}} ,\beta \end{matrix}}\;\right|\,z\right),\quad m\leq q,\;\beta '-\beta \in \mathbb {Z} ,}
G
p
+
1
,
q
+
1
m
,
n
+
1
(
α
,
a
p
b
q
,
β
|
z
)
=
(
−
1
)
β
−
α
G
p
+
1
,
q
+
1
m
+
1
,
n
(
a
p
,
α
β
,
b
q
|
z
)
,
m
≤
q
,
β
−
α
=
0
,
1
,
2
,
…
,
{\displaystyle G_{p+1,\,q+1}^{\,m,\,n+1}\!\left(\left.{\begin{matrix}\alpha ,\mathbf {a_{p}} \\\mathbf {b_{q}} ,\beta \end{matrix}}\;\right|\,z\right)=(-1)^{\beta -\alpha }\;G_{p+1,\,q+1}^{\,m+1,\,n}\!\left(\left.{\begin{matrix}\mathbf {a_{p}} ,\alpha \\\beta ,\mathbf {b_{q}} \end{matrix}}\;\right|\,z\right),\quad m\leq q,\;\beta -\alpha =0,1,2,\dots ,}
由上面一般關係式 一節的討論知 Meijer-G 函數滿足下列微分方程,它與廣義超幾何函數滿足的微分方程形式上很類似。
[
(
−
1
)
p
−
m
−
n
z
∏
k
=
1
p
(
z
d
d
z
−
a
k
+
1
)
−
∏
k
=
1
q
(
z
d
d
z
−
b
k
)
]
w
=
0
,
w
(
z
)
=
G
p
,
q
m
,
n
[
a
1
,
…
,
a
p
b
1
,
…
,
b
q
;
z
]
{\displaystyle \left[(-1)^{p-m-n}z\prod _{k=1}^{p}\left(z{\frac {\rm {d}}{{\rm {d}}z}}-a_{k}+1\right)-\prod _{k=1}^{q}\left(z{\frac {\rm {d}}{{\rm {d}}z}}-b_{k}\right)\right]w=0,\quad w(z)=G_{p,q}^{m,n}\left[{\begin{array}{c}a_{1},\dots ,a_{p}\\b_{1},\dots ,b_{q}\end{array}};z\right]}
.
這是一個 max(p ,q ) 階的線性微分方程,在 z =0 附近的基本解組可以選取為
{
G
p
,
q
1
,
p
(
a
1
,
…
,
a
p
b
h
,
b
1
,
…
,
b
h
−
1
,
b
h
+
1
,
…
,
b
q
|
(
−
1
)
p
−
m
−
n
+
1
z
)
,
h
=
1
,
2
,
…
,
q
,
if
p
⩽
q
G
p
,
q
q
,
1
(
a
h
,
a
1
,
…
,
a
h
−
1
,
a
h
+
1
,
…
,
a
p
b
1
,
…
,
b
q
|
(
−
1
)
q
−
m
−
n
+
1
z
)
,
h
=
1
,
2
,
…
,
p
,
if
p
⩾
q
{\displaystyle {\begin{cases}G_{p,q}^{\,1,p}\!\left(\left.{\begin{matrix}a_{1},\dots ,a_{p}\\b_{h},b_{1},\dots ,b_{h-1},b_{h+1},\dots ,b_{q}\end{matrix}}\;\right|\,(-1)^{p-m-n+1}\;z\right),\quad h=1,2,\dots ,q,&{\text{ if }}p\leqslant q\\G_{p,q}^{\,q,1}\!\left(\left.{\begin{matrix}a_{h},a_{1},\dots ,a_{h-1},a_{h+1},\dots ,a_{p}\\b_{1},\dots ,b_{q}\end{matrix}}\;\right|\,(-1)^{q-m-n+1}\;z\right),\quad h=1,2,\dots ,p,&{\text{ if }}p\geqslant q\end{cases}}}
當 p =q 時兩種取法都可以。
從 m , n 的取值上就可以看到它們跟廣義超幾何函數有直接的聯繫。事實上的確如此,以第一種情況為例,
G
p
,
q
1
,
p
(
a
1
,
…
,
a
p
b
h
,
b
1
,
…
,
b
h
−
1
,
b
h
+
1
,
…
,
b
q
|
(
−
1
)
p
−
m
−
n
+
1
z
)
=
z
b
h
G
p
,
q
1
,
p
(
a
1
−
b
h
,
…
,
a
p
−
b
h
0
,
b
1
−
b
h
,
…
,
b
h
−
1
−
b
h
,
b
h
+
1
−
b
h
,
…
,
b
q
|
(
−
1
)
p
−
m
−
n
+
1
z
)
{\displaystyle G_{p,q}^{\,1,p}\!\left(\left.{\begin{matrix}a_{1},\dots ,a_{p}\\b_{h},b_{1},\dots ,b_{h-1},b_{h+1},\dots ,b_{q}\end{matrix}}\;\right|\,(-1)^{p-m-n+1}\;z\right)=z^{b_{h}}G_{p,q}^{\,1,p}\!\left(\left.{\begin{matrix}a_{1}-b_{h},\dots ,a_{p}-b_{h}\\0,b_{1}-b_{h},\dots ,b_{h-1}-b_{h},b_{h+1}-b_{h},\dots ,b_{q}\end{matrix}}\;\right|\,(-1)^{p-m-n+1}\;z\right)}
等號右邊的 Meijer-G 函數顯然就是廣義超幾何函數。
因為廣義超幾何函數是 Meijer-G 函數的特殊情形,故所有可以用廣義超幾何函數表示的特殊函數都可以用 Meijer-G 函數表示,但是,在個別情況下,用 Meijer-G 函數有更簡單的表示式,例子如諾依曼函數 ,它可以用超幾何函數0 F1 表示,但表示式僅僅是將(第一類)貝塞爾函數的超幾何函數表示式代入其定義式中,因此含有兩個超幾何函數。而用 Meijer-G 函數就可以直接表示為:
Y
ν
(
z
)
=
G
1
,
3
2
,
0
(
−
ν
−
1
2
ν
2
,
−
ν
2
,
−
ν
−
1
2
|
z
2
4
)
,
−
π
2
<
arg
z
≤
π
2
{\displaystyle Y_{\nu }(z)=G_{1,3}^{\,2,0}\!\left(\left.{\begin{matrix}{\frac {-\nu -1}{2}}\\{\frac {\nu }{2}},{\frac {-\nu }{2}},{\frac {-\nu -1}{2}}\end{matrix}}\;\right|\,{\frac {z^{2}}{4}}\right),\qquad {\frac {-\pi }{2}}<\arg z\leq {\frac {\pi }{2}}}
另外一個例子是不完全伽瑪函數對參變量的偏導數,它無法用廣義超幾何函數表出,但可以用 Meijer-G 函數表出:
∂
Γ
(
a
,
z
)
∂
a
=
Γ
(
a
,
z
)
ln
z
+
G
2
,
3
3
,
0
(
1
,
1
a
,
0
,
0
|
z
)
{\displaystyle {\frac {\partial \Gamma (a,z)}{\partial a}}=\Gamma (a,z)\ln z+\,G_{2,\,3}^{\,3,\,0}\!\left(\left.{\begin{matrix}1,1\\a,0,0\end{matrix}}\;\right|\,z\right)}
事實上,不完全伽瑪函數對參變量的高階偏導數也可以用 Meijer-G 函數表出,詳見不完全Γ函數 一文。
如同廣義超幾何函數和Kampé de Fériet函數(雙變量的廣義超幾何函數)的關係那樣,Meijer G-函數也可以被推廣到兩個變量的情況:
G
p
,
q
,
u
1
,
v
1
,
u
2
,
v
2
m
,
n
,
s
1
,
t
1
,
s
2
,
t
2
[
a
1
,
…
,
a
p
;
c
1
,
1
,
…
,
c
1
,
u
1
;
c
2
,
1
,
…
,
c
2
,
u
2
;
b
1
,
…
,
b
q
;
d
1
,
1
,
…
,
d
1
,
v
1
;
d
2
,
1
,
…
,
d
2
,
v
2
;
z
,
w
]
=
−
1
4
π
2
∫
L
∫
L
′
∏
k
=
1
m
Γ
(
b
k
+
σ
+
τ
)
∏
k
=
1
n
Γ
(
1
−
a
k
−
σ
−
τ
)
∏
k
=
n
+
1
p
Γ
(
a
k
+
σ
+
τ
)
∏
k
=
m
+
1
q
Γ
(
1
−
a
k
−
σ
−
τ
)
∏
k
=
1
s
1
Γ
(
d
1
,
k
+
σ
)
∏
k
=
1
t
1
Γ
(
1
−
c
1
,
k
−
σ
)
∏
k
=
t
1
+
1
u
1
Γ
(
c
1
,
k
+
σ
)
∏
k
=
s
1
+
1
v
1
Γ
(
1
−
d
1
,
k
−
σ
)
∏
k
=
1
s
2
Γ
(
d
2
,
k
+
τ
)
∏
k
=
1
t
2
Γ
(
1
−
c
2
,
k
−
τ
)
∏
k
=
t
2
+
1
u
2
Γ
(
c
2
,
k
+
τ
)
∏
k
=
s
2
+
1
v
2
Γ
(
1
−
d
2
,
k
−
τ
)
z
−
σ
w
−
τ
d
σ
d
τ
/
;
m
,
n
,
s
1
,
t
1
,
s
2
,
t
2
,
p
,
q
,
u
1
,
v
1
,
u
2
,
v
2
∈
N
,
m
≤
q
,
n
≤
p
,
s
1
≤
v
1
,
t
1
≤
u
1
,
s
2
≤
v
2
,
t
2
≤
u
2
{\displaystyle G_{p,q,u_{1},v_{1},u_{2},v_{2}}^{m,n,s_{1},t_{1},s_{2},t_{2}}\left[{\begin{array}{lll}a_{1},\dots ,a_{p};c_{1,1},\dots ,c_{1,u_{1}};c_{2,1},\dots ,c_{2,u_{2}};\\b_{1},\dots ,b_{q};d_{1,1},\dots ,d_{1,v_{1}};d_{2,1},\dots ,d_{2,v_{2}};\end{array}}\ z,w\right]=-{\frac {1}{4\pi ^{2}}}\int _{\mathcal {L}}\int _{\mathcal {L'}}{\frac {\prod _{k=1}^{m}\Gamma (b_{k}+\sigma +\tau )\prod _{k=1}^{n}\Gamma (1-a_{k}-\sigma -\tau )}{\prod _{k=n+1}^{p}\Gamma (a_{k}+\sigma +\tau )\prod _{k=m+1}^{q}\Gamma (1-a_{k}-\sigma -\tau )}}{\frac {\prod _{k=1}^{s_{1}}\Gamma (d_{1,k}+\sigma )\prod _{k=1}^{t_{1}}\Gamma (1-c_{1,k}-\sigma )}{\prod _{k=t_{1}+1}^{u_{1}}\Gamma (c_{1,k}+\sigma )\prod _{k=s_{1}+1}^{v_{1}}\Gamma (1-d_{1,k}-\sigma )}}{\frac {\prod _{k=1}^{s_{2}}\Gamma (d_{2,k}+\tau )\prod _{k=1}^{t_{2}}\Gamma (1-c_{2,k}-\tau )}{\prod _{k=t_{2}+1}^{u_{2}}\Gamma (c_{2,k}+\tau )\prod _{k=s_{2}+1}^{v_{2}}\Gamma (1-d_{2,k}-\tau )}}z^{-\sigma }w^{-\tau }d\sigma d\tau /;m,n,s_{1},t_{1},s_{2},t_{2},p,q,u_{1},v_{1},u_{2},v_{2}\in \mathbb {N} ,m\leq q,n\leq p,s_{1}\leq v_{1},t_{1}\leq u_{1},s_{2}\leq v_{2},t_{2}\leq u_{2}}
^ 具體可參見DLMF上的圖 (頁面存檔備份 ,存於網際網路檔案館 )
Askey, R. A.; Daalhuis, Adri B. Olde, Generalized Hypergeometric Functions and Meijer G -Function , Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (編), NIST Handbook of Mathematical Functions , Cambridge University Press, 2010, ISBN 978-0521192255 , MR 2723248
Beals, Richard; Szmigielski, Jacek. Meijer G-Functions: A Gentle Introduction, (PDF) . Notices of the American Mathematical Society. 2013, 60 (7) [2014-09-06 ] . (原始內容存檔 (PDF) 於2021-01-26).
Luke, Yudell L. The Special Functions and Their Approximations, Vol. I. New York: Academic Press. 1969. ISBN 0-12-459901-X . (see Chapter V, "The Generalized Hypergeometric Function and the G-Function", p. 136)
The Wolfram Functions Site . [2014-09-06 ] . (原始內容存檔 於2007-10-10).