泛代数
此条目需要精通或熟悉相关主题的编者参与及协助编辑。 (2011年12月11日) |
泛代数,也称普适代数学(英语:Universal algebra),研究通用于所有代数结构的理论,而不是代数结构的模型。举个例子,并不是将特殊的个别的群作为个体分别来学习,而是将整个群论的理论作为学习的主题。
基本思想
[编辑]从泛代数角度来看,代数是拥有一组运算元的集合A。在A上的n元运算是以n个A的元素为输入并返回一个A的元素的函数。这样,0元运算(空运算)可简单表示为A的一个元素或常数,通常用a表示。一元运算是简单的从A到A的函数,常用置于参数前的符号表示,如~x。二元运算通常用置于参数间的符号表示,如x*y。元数更高或不确定的运算通常用函数符号表示,参数放在括号中,例如f(x, y, z)或f(x1,...,xn)。那么,讨论代数的一种方式就是将其称为某类代数,其中是自然数的有序数列,表示代数运算的元数。不过也有研究者允许无穷元运算,如,其中J是无穷指标集,是完全格代数理论中的一种运算。
等式
[编辑]定义了运算后,代数的性质由公理进一步定义,在泛代数中通常用恒等式或等式法则的形式。例如二元运算的结合律,可由等式x ∗ (y ∗ z) = (x ∗ y) ∗ z给出。
簇
[编辑]由等式定义的代数结构集合称作簇或等价类。
将研究范围限制在簇,就排除了
等式类研究可看作是模型论的一支,通常处理只有运算的结构(类型中可以有函数的符号,但不能有等式以外的关系的符号)。谈论这种结构的语言只使用等式。
其不包含所有广义代数结构。例如,有序交换群涉及序关系,因此不属于这个范畴。
域类也不属于等式类,因为没有类型能把所有域法则写成等式(域中元素的逆适于所有非零元素,因此不能把逆加入类型中)。
这样限制的一个好处是,泛代数研究的结构可定义在任何具有有限积的范畴中。例如,拓扑群只是拓扑空间范畴中的一个群。
例子
[编辑]大多数泛代数系统都是簇的例子,但不总是很明显,因为通常的定义往往涉及量化或不等式。
群
[编辑]以群的定义为例。通常,一个群的定义由二元运算*完成,并遵循以下公理:
- 结合律: x ∗ (y ∗ z) = (x ∗ y) ∗ z;  ;形式化:∀x,y,z. x∗(y∗z)=(x∗y)∗z.
- 单位元:存在一个元素e,使得对每个x。都有e ∗ x = x = x ∗ e;  ;形式化:∃e ∀x. e∗x=x=x∗e.
- 逆元素:很容易看出单位元是唯一的,一般记作e。那么对每个x,都有元素i使x ∗ i = e = i ∗ x;  ;形式化:∀x ∃i. x∗i=e=i∗x.
(有人也使用“封闭”公理,即只要x ∗ y都属于A,则x*y也属于,但这里称*为二元运算已经暗示了这一点。)
群的这一定义并不直接符合泛代数,因为单位元和逆元素并非纯粹从“对所有”元素普遍成立的等式规律表述,而还涉及存在量词“存在……”。除了二元运算∗,还可指定空运算e和一元运算~,~x通常写作x−1。这样,公理变为:
- 结合律:x ∗ (y ∗ z) = (x ∗ y) ∗ z.
- 单位元:e ∗ x = x = x ∗ e;形式化:∀x. e∗x=x=x∗e.
- 逆元素:x ∗ (~x) = e = (~x) ∗ x  ;形式化:∀x. x∗~x=e=~x∗x.
总结来说,通常的定义有
- 单一二元运算
- 1个等式法则(结合律)
- 2个量化法则(单位元与逆元)
而按泛代数,则有
- 3种运算:1种二元运算,1种一元运算,1种零运算
- 3个等式法则(结合律、单位元、逆元)
- 没有量化法则(最外层的全称量词除外,这在簇中是允许的)
关键点是,额外的运算没有增加信息,而是唯一地遵循了群的通常定义,虽然没有唯一指定单位元e,但很简单就能证明它是唯一的,每个逆元素也唯一。
泛代数观点非常适合范畴论。例如,在范畴论中定义群对象时,若对象可能不是集合,就必须用到等式法则(在一般范畴中是有意义的),而非量化法则(指单个元素)。此外,逆元和单位元在范畴中被指定为态射。例如,拓扑群中的逆不仅必须逐元素存在,还要给出连续映射(态射)。有人还要求恒等映射也要闭包(上纤维化)。
其他例子
[编辑]大部分代数结构都可作为泛代数的例子。
基本构造
[编辑]假设类固定。泛代数中有三种基本构造:同态像、子代数与积。
两个代数A、B之间的同态是函数h: A → B,使得对A中的每个n元运算fA和对应的B中n元运算fB,都有h(fA(x1,...,xn)) = fB(h(x1),...,h(xn))(若可以看出函数来自哪个代数,则f的上下标就可去掉)。例如,若e是常数(空运算),那么 h(eA) = eB。若~是一元运算,那么h(~x) = ~h(x)。若∗是二元运算,那么h(x ∗ y) = h(x) ∗ h(y),以此类推。我们可以取代数的同态像h(A)。
A 的子代数是A的子集,对A的所有运算都封闭。某个代数结构集合的积,指的是集合在坐标上定义的运算的笛卡尔积。
部分基本定理
[编辑]动机与应用
[编辑]除了统一方法之外,泛代数还给出了深奥的定理以及重要的示例和反例,为新代数研究提供了有用的框架。它可以将为某些代数发明的方法转移到其他类的代数,方法是用泛代数(如果可能的话)重新诠释之,然后将其解释为适用于其他类别的方法。它还澄清了概念;正如J.D.H. Smith所说:“在特定框架中看起来杂乱而复杂的东西,在适当的一般框架中可能会变得简单而明显”。
特别是,泛代数可用于幺半群、环和格的研究。在泛代数之前,许多定理(最知名的是同构基本定理)是在所有类别中分别证明的,但有了泛代数,就可以对每种代数系统进行一次性证明。
下面提到的Higgins 1956年的论文为一系列特定代数系统提供了框架而受到广泛关注,而他1963年的论文则对具有仅部分定义运算的代数的讨论而备受瞩目,典型的例子就是范畴和广群。这引出了高维代数的话题,可定义为研究具有部分运算的代数理论,其域是在几何条件下定义的。著名的例子是各种形式的高维范畴和广群。
约束满足问题
[编辑]泛代数为约束满足问题(CSP)提供了一种自然的语言。CSP是一类重要的计算问题:给定关系代数A和其上的句子,如何确定能否在A中得到满足。代数A通常是确定的,因此CSPA指实例仅为存在语句的问题。
可以证明,对某个代数A,每个计算问题都可表为CSPA。[1]
例如,n色问题可表述为代数的CSP,即具有个元素和一个关系式(不等式)的代数。
二分猜想(2017年4月证明)指出,若A是有限代数,则CSPA要么是P问题,要么是NP完全问题。[2]
推广
[编辑]还可用范畴论手段研究泛代数:可用特殊的范畴描述代数结构,称为劳维尔理论或更广义的代数论。相对地,也可用单子描述代数结构。这两种方法密切相关,各有优势。[3] 特别地,每个劳维尔理论都在集合范畴上给出了单子,而集合范畴的任何“有限”单子都产生于某个劳维尔理论。单子描述的是特定范畴(如集合范畴)中的代数结构,而代数论描述的是一大类范畴(即有有限积的范畴)中任何范畴的结构。
范畴论的最新发展是算元论——算元是一系列运算,类似于泛代数,但只允许在带变量的表达式间建立等式,不允许重复或省略变量。因此,环可被描述为某些算元的所谓“代数”,但不能描述为群,因为在左侧重复了变量g,在右侧省略了变量g。起初这似乎是个麻烦的限制,但其结果是,算元有某些优势:例如,可以统一环和向量空间,得到结合代数,但无法统一环和向量空间。
另一处发展是偏代数,其中的运算可以是偏函数。某些偏函数也可通过所谓“本质代数论”的劳维尔理论推广来处理。[4]
泛代数的另一种推广是模型论,有时被描述为“泛代数+逻辑”。[5]
相关条目
[编辑]脚注
[编辑]- ^ Bodirsky, Manuel; Grohe, Martin, Non-dichotomies in constraint satisfaction complexity (PDF), 2008 [2023-10-01], (原始内容存档 (PDF)于2023-12-23)
- ^ Zhuk, Dmitriy. The Proof of CSP Dichotomy Conjecture. 2017. arXiv:1704.01914 [cs.cc].
- ^ Hyland, Martin; Power, John, The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads (PDF), 2007 [2023-10-01], (原始内容存档 (PDF)于2023-11-29)
- ^ nLab的Essentially algebraic theory条目
- ^ C.C. Chang and H. Jerome Keisler. Model Theory. Studies in Logic and the Foundation of Mathematics 73 3rd. North Holland. 1990: 1. ISBN 0444880542.
参考文献
[编辑]- Bergman, George M., 1998. An Invitation to General Algebra and Universal Constructions (页面存档备份,存于互联网档案馆) (pub. Henry Helson, 15 the Crescent, Berkeley CA, 94708) 398 pp. ISBN 0-9655211-4-1.
- Birkhoff, Garrett, 1946. Universal algebra. Comptes Rendus du Premier Congrès Canadien de Mathématiques, University of Toronto Press, Toronto, pp. 310–326.
- Burris, Stanley N., and H.P. Sankappanavar, 1981. A Course in Universal Algebra (页面存档备份,存于互联网档案馆) Springer-Verlag. ISBN 3-540-90578-2 Free online edition.
- Cohn, Paul Moritz, 1981. Universal Algebra. Dordrecht, Netherlands: D.Reidel Publishing. ISBN 90-277-1213-1 (First published in 1965 by Harper & Row)
- Freese, Ralph, and Ralph McKenzie, 1987. Commutator Theory for Congruence Modular Varieties (页面存档备份,存于互联网档案馆), 1st ed. London Mathematical Society Lecture Note Series, 125. Cambridge Univ. Press. ISBN 0-521-34832-3. Free online second edition.
- Grätzer, George, 1968. Universal Algebra D. Van Nostrand Company, Inc.
- Higgins, P. J. Groups with multiple operators (页面存档备份,存于互联网档案馆). Proc. London Math. Soc. (3) 6 (1956), 366–416.
- Higgins, P.J., Algebras with a scheme of operators. Mathematische Nachrichten (27) (1963) 115–132.
- Hobby, David, and Ralph McKenzie, 1988. The Structure of Finite Algebras (页面存档备份,存于互联网档案馆) American Mathematical Society. ISBN 0-8218-3400-2. Free online edition.
- Jipsen, Peter, and Henry Rose, 1992. Varieties of Lattices (页面存档备份,存于互联网档案馆), Lecture Notes in Mathematics 1533. Springer Verlag. ISBN 0-387-56314-8. Free online edition.
- Pigozzi, Don. General Theory of Algebras (页面存档备份,存于互联网档案馆). Free online edition.
- Smith, J.D.H., 1976. Mal'cev Varieties, Springer-Verlag.
- Whitehead, Alfred North, 1898. A Treatise on Universal Algebra, Cambridge. (Mainly of historical interest.)
外部链接
[编辑]- Algebra Universalis (页面存档备份,存于互联网档案馆)—a journal dedicated to Universal Algebra.