用户:ItMarki/数量级 (温度)
倍数 | 单位 | 项目 |
---|---|---|
0 | 0 K | 绝对零度:自由物体达到零点能量,不在热力学系统时不会产生相互作用 |
10−30 | 1 qK | |
10−18 | 1 aK | |
10−15 | 1 fK | |
10−12 | 1 pK | 38 pK:已知达到的最低温度,由铷制玻色–爱因斯坦凝态的物质波透镜产生。[1] 100 pK:最低温度记录,由铑金属的核自旋的冷却产生。.[2] 450 pK:实验室里达到的最低温度记录,为麻省理工学院中的钠制玻色–爱因斯坦凝聚气体达到的最低温度。[3] |
10−9 | 1 nK | 50 nK:钾-40的费米温度 碱金属玻色–爱因斯坦凝态的临界温度 |
10−6 | 1 μK | |
10−3 | 1 mK | 无线电波激发 1.7 mK:氦-3/氦-4稀释致冷的最低温度记录,也是用已知技巧可无限期维持的最低温度。 2.5 mK:氦-3的费米熔点 60 mK:顺磁性分子的绝热退磁 300 mK:氦-3的蒸发冷却 700 mK:氦-3/氦-4混合物出现相的分离 950 mK:氦在2.5 MPa下的熔点。所有118种元素在此温度或以下皆为固体。 微波激发 |
1 | 1 K | 1 K:回力棒星云,已知最冷的自然环境 4.1 K:汞的超导转变温度 4.22 K:束缚氦的沸点 5.19 K:束缚氦的临界点 7.2 K:铅的超导转变温度 9.3 K:铌的超导转变温度 |
101 | 10 K | 超导现象中价电子的费米熔点 14.01 K:束缚氢的熔点 20.28 K:束缚氢的沸点 33 K:氢的临界点 44 K:冥王星的平均表面温度 53 K:海王星的平均表面温度 63 K:束缚氮的熔点 68 K:天王星的平均表面温度 77.35 K:束缚氮的沸点 90.19 K:束缚氧的沸点 92 K:Y–Ba–Cu–氧化物(YBCO)的超导转变温度 |
102 | 100 K | 红外线激发 134 K:常压下的最高温超导体(汞-钡-钙-铜氧化物) 165 K:过冷水的玻璃转化温度 184.0 K(–89.2 °C):地球上录得最低的气温 192 K:冰的德拜温度 273.15 K(0 °C):束缚水的熔 273.16 K (0.01 °C):水的三相点温度 ~293 K:室温 373.15 K(100 °C),海平面上束缚水的沸点 647 K:过热水临界点 737.5 K:金星的平均表面温度 (参见以下详表) |
103 | 1 kK | Visible light excitations 500–2200 K on brown dwarfs (photosphere) 1043 K Curie temperature of iron (point at which iron transitions from ferromagnetic to paramagnetic behavior and loses any permanent magnetism) 1170 K at wood fire 1300 K in lava flows, open flames 1500 K in basalt lava flows ~1670 K at blue candle flame 1811 K, melting point of iron (lower for steel) 1830 K in Bunsen burner flame 1900 K at the Space Shuttle orbiter hull in 8 km/s dive 2022 K, boiling point of lead 2074 K, surface temperature of the coolest star, 2MASS J0523-1403 |
104 | 10 kK | 10 kK on Sirius A 10–15 kK in mononitrogen recombination 15.5 kK, critical point of tungsten 25 kK, mean of the Universe 10,000 years after the Big Bang 26 kK on white dwarf Sirius B 28 kK in record cationic lightning over Earth 29 kK on surface of Alnitak (easternmost star of Orion's belt) 4–8–40–160 kK on white dwarfs 30–400 kK on a planetary nebula's asymptotic giant helium star 36 kK boundary between inner and outer core within Jupiter 37 kK in proton–electron reactions 38 kK on Eta Carinae 46 kK on Wolf–Rayet star R136a1[11] 50 kK at protostar (core) 54.5 kK on ON2 III(f*) star LH64-16[12] >200 kK on Butterfly Nebula ~300 kK at 17 meters from Little Boy's detonation Fermi boiling point of valence electrons X-ray excitations |
106 | 1 MK | 0.8 MK in solar wind gamma ray excitations 1 MK inside old neutron stars, brown dwarfs, and at gravital deuterium fusion range 1–3–10 MK above Sun (corona) 2.4 MK at T Tauri stars and gravital lithium-6 fusion range 2.5 MK at red dwarfs and gravital protium fusion range 10 MK at orange dwarfs and gravital helium-3 fusion range 15.6 MK at Sun's core 10–30–100 MK in stellar flares 20 MK in novae 23 MK, beryllium-7 fusion range 60 MK above Eta Carinae 85 MK (15 keV) in a magnetic confinement fusion plasma 200 MK at helium star and gravital helium-4 fusion range 230 MK, gravital carbon-12 fusion range 460 MK, gravital neon fusion–disproportionation range 5–530 MK in Tokamak Fusion Test Reactor's plasma 750 MK, gravital oxygen fusion range |
109 | 1 GK | 1 GK, everything 100 seconds after the Big Bang 1.3–1.7 GK, gravital silicon fusion range 3 GK in electron–positron reactions 10 GK in supernovae 10 GK, everything 1 second after the Big Bang 700 GK in quasars' accretion discs 740 GK, Hagedorn temperature or Fermi melting point of pions |
1012 | 1 TK | 0.1–1 TK at new neutron star 0.5–1.2 TK, Fermi melting point of hadrons into quark–gluon plasma 3–5 TK in proton–antiproton reactions 3.6 TK, temperature at which matter doubles in mass (compared to its mass at 0 K) due to relativistic effects 5.5 TK, highest man-made temperature in thermal equilibrium as of 2015 (quark–gluon plasma from LHC collisions)[13] 10 TK, 100 microseconds after the Big Bang 45–67 TK at collapsar of a gamma-ray burst 300–900 TK at proton–nickel conversions in the Tevatron's Main Injector[需要解释] |
1015 | 1 PK | 0.3–2.2 PK at proton–antiproton collisions
2.8 PK within an electroweak star |
1018 | 1 EK | |
1021 | 1 ZK | |
1024 | 1 YK | 0.5–7 YK at ultra-high-energy cosmic ray collisions |
1027 | 1 RK | everything 10−35 seconds after the Big Bang |
1030 | 1 QK | Hagedorn temperature of strings |
1032 | 100 QK | 142 QK, Planck temperature |
1033 | 1000 QK | Theory of everything excitations[来源请求] |
10290 | 10260 QK | Landau pole of Quantum electrodynamics |
100 K到1000 K的详表
[编辑]大多数人类活动都在此数量级的温度内进行。水为液体的温度以浅灰色表示。
开尔文 | 摄氏度 | 华氏度 | 条件 |
---|---|---|---|
100 K | −173.15 °C | −279.67 °F | |
133 K至163 K | −140至−110 °C | −220至−160 °F | 全身冷疗室的一般温度[14] |
165 K | −108 °C | −163 °F | 过冷水的玻璃转化温度(有争议)[15] |
175.4 K | −97.8 °C | −144 °F | 地球上录得最低的亮度温度,以卫星远端测量(南极洲)[16] |
183.7 K | −89.5 °C | −129.1 °F | 异丙醇的凝固点/熔点[17] |
183.9 K | −89.2 °C | −128.6 °F | 地球上录得最低的气温(南极洲沃斯托克站,1983-07-21 01:45 UTC) |
192 K | −81 °C | −114 °F | 冰的德拜温度 |
193至203 K | −80至−70 °C | −112至−94 °F | 超低温冰箱的一般温度 |
194.6 K | −78.5 °C | −109.3 °F | 二氧化碳(干冰)的升华点 |
205.5 K | −67.7 °C | −89.9 °F | 北半球上录得最低的气温(苏联奥伊米亚康,1933-02-06)[18] |
207.05 K | −66.1 °C | −86.98 °F | 北美洲上录得最低的气温(格陵兰北冰,1954-01-09)[19] |
210 K | −63 °C | −80 °F | 火星的平均表面温度 |
214.9 K | –58.3 °C | –72.9 °F | 地球上最低的年均温度(南极洲冰穹A)[20] |
223.15 K | −50 °C | −58 °F | 大约6亿5000万年前雪球地球的平均表面温度[21] |
224.8 K | −48.4 °C | −55.0 °F | 水可以保持液体的最低温度(参见过冷) |
225 K | −48 °C | −55 °F | 棉籽油的凝固点/熔点[22] |
233.15 K | −40 °C | −40 °F | 摄氏温标和华氏温标的相交点 人类皮肤在此温度或以下可能会立即冻伤[23] |
234.3 K | −38.83 °C | −37.89 °F | 汞的凝固点/熔点 |
240.4 K | −32.8 °C | −27.0 °F | 南美洲上录得最低的气温(阿根廷萨缅托,1907-06-01)[24] |
246 K | −27 °C | −17 °F | 珠穆朗玛峰的大约年均温度[25] |
249 K | –24 °C | –11 °F | 亚麻籽油的凝固点/熔点[22] |
249.3 K | –23.9 °C | –11.0 °F | 非洲上录得最低的气温(摩洛哥伊夫兰,1935-02-11)[24] |
250 K | –23 °C | –9 °F | 澳大利亚上录得最低的气温(澳大利亚新南威尔士州夏洛特山口,1994-06-29)[24] |
255.37 K | –177⁄9 °C | 0 °F | 丹尼尔·加布里尔·华伦海特录得盐水-冰混合物的最低温度 |
255 K | –18 °C | 0 °F | 杏仁油的凝固点/熔点[22] 家用冷冻箱的一般温度[26] |
256 K | –17 °C | 1 °F | 葵花籽油的凝固点/熔点[22] |
256 K | –17 °C | 2 °F | 红花油的凝固点/熔点[22] |
257 K | –16 °C | 3 °F | 大豆油的凝固点/熔点[22] |
262 K | −11 °C | 12 °F | 玉米油的凝固点/熔点[22] |
263.15 K | –10 °C | 14 °F | 芥花籽油的凝固点/熔点[22] 葡萄籽油的凝固点/熔点[22] |
265 K | –8 °C | 18 °F | 在此温度以下,白霜可以形成(参见霜) 大麻籽油的凝固点/熔点[22] |
265.8 K | –7.2 °C | 19 °F | 溴的凝固点/熔点 |
267 K | –6 °C | 21 °F | 橄榄油的凝固点/熔点[22] 芝麻油的凝固点/熔点[22] |
271.15 K | −2 °C | 28.4 °F | 海洋的凝固点/熔点。海洋的盐度大约为3.47%。[27][28] |
273.14 K | -0.01 °C | 31.98 °F | 可导致冻伤的最高温度 |
273.15 K | 0.00 °C | 32.00 °F | 淡水的凝固点/熔点(1 atm) |
273.16 K | 0.01 °C | 32.02 °F | 淡水的三相点 |
276 K | 3 °C | 37 °F | 花生油的凝固点/熔点[29] |
277 K | 4 °C | 39 °F | 家用冷藏室的一般温度 |
277.13 K | 3.98 °C | 39.16 °F | 水到达最高密度[30] |
279.8 K | 6.67 °C | 44 °F | 在此温度以下,皮肤很有可能会麻木 |
283.2 K | 10 °C | 50 °F | 大多数植物可生长的最低温度(参见生长度日) |
286.9 K | 12.7 °C | 54.9 °F | 人类在意外失温症下能存活的最低体温(波兰拉茨瓦维采的一名2岁男孩,2014年3月30日)[31][32] |
287.6 K | 14.44 °C | 58 °F | 皮肤的一般疼痛阈值 |
288 K | 15 °C | 59 °F | 地球的平均表面温度 |
291.6 K | 18.4 °C | 65.1 °F | 南极洲录得的最热温度(埃斯佩兰萨站,2020-02-06)[33] |
294 K | 21 °C | 70 °F | 常温的一般定义值 |
296 K | 23 °C | 73 °F | 大约5580万年前古新世—始新世极热事件中地球的平均表面温度[34] |
297 K | 24 °C | 75 °F | 棕榈仁油的凝固点/熔点[22] |
298 K | 25 °C | 77 °F | 椰子油的凝固点/熔点[22] |
300 K | 27 °C | 81 °F | 裸体人类不动时的一般体温[35][36] 钫的估计凝固点/熔点 |
302.9 K | 29.8 °C | 85.6 °F | 镓的凝固点/熔点 |
303.15 K | 30 °C | 86 °F | 在此温度以上,植物的生长速度一般比在此温度的慢(参见生长度日) |
304 K | 31 °C | 88 °F | 黄油的凝固点/熔点 二氧化碳的临界点 |
307 K | 34 °C | 93 °F | 白磷的自燃温度 |
307.6 K | 34.4 °C | 93.9 °F | 地球的最热年均表面温度(埃塞俄比亚达洛尔)[20] |
308 K | 35 °C | 95 °F | 人类的失温症体温 录得最热的海温(红海) 棕榈油的凝固点/熔点[22] |
309.5 K | 36.4 °C | 97.5 °F | 人类的平均体温[37] |
311.03 K | 37.87 °C | 100.2 °F | 人类发烧的初期温度 |
311.8 K | 38.6 °C | 101.5 °F | 猫的平均体温[38] |
313.15 K | 40 °C | 104 °F | 热水浴的最大推荐温度[39] |
315 K | 42 °C | 108 °F | 此温度的人类发烧通常致命 |
317.6 K | 44.44 °C | 112 °F | 皮肤的热疼痛阈值 |
319.3 K | 46.1 °C | 115 °F | 世界上下雨时录得最热的气温(美国加利福尼亚州尼德尔斯,2012年8月13日)[40] |
319.7 K | 46.5 °C | 115.7 °F | 人类幸存的最热发烧[41] |
322.1 K | 48.9 °C | 120.0 °F | 南美洲录得最热的气温(阿根廷里瓦达维亚,1905年12月11日)[24] 数个美国水管法规所述热水的最高安全温度[42] 此温度的水会在接触8分钟后引致二级烧伤,在10分钟后引致三级烧伤[42] |
323.14 K | 49.99 °C | 121.99 °F | 结冰和沸腾的中点 |
323.9 K | 50.7 °C | 123.3 °F | 南半球录得最热的气温(澳大利亚乌德纳达塔,1960年2月1日)[24] |
329.87 K | 56.7 °C | 134.1 °F | 地球上录得最热的气温(美国加利福尼亚州因约县弗内斯克里克死亡谷,1913年7月10日)[43] |
333.15 K | 60 °C | 140 °F | 此温度的水会在接触3秒后引致二级烧伤,在5秒后引致三级烧伤[42] 吹风机的平均温度 |
336 K | 63 °C | 145.4 °F | 牛奶的巴斯德消毒法 |
342 K | 69 °C | 157 °F | 珠穆朗玛峰上水的沸点[44] |
343.15 K | 70 °C | 158 °F | 食物全熟 部分细菌能生存的温泉[45] |
350 K | 77 °C | 170 °F | 食物水煮 |
351.52 K | 78.37 °C | 173.07 °F | 乙醇的沸点 |
353.15 K | 80 °C | 176 °F | 桑拿的平均温度 |
355 K | 82 °C | 180 °F | 工业级商业洗碗机的建议最后冲洗温度[46] |
355.6 K | 82.4 °C | 180.3 °F | 2-丙醇的沸点[17] |
366 K | 93 °C | 200 °F | 食物炖煮 |
367 K | 94 °C | 201 °F | 地球上录得最热的地面温度(美国加利福尼亚州因约县弗内斯克里克死亡谷,1972年7月15日)[47] |
371 K | 98 °C | 209 °F | 钠的凝固点/熔点 |
373.13 K | 99.98 °C | 211.97 °F | 1 atm的压强下水的沸点(见摄氏温标) |
380 K | 107 °C | 225 °F | 未加工红花油的冒烟点 糖浆浓缩至75%糖 |
388 K | 115 °C | 239 °F | 硫的凝固点/熔点 |
400 K | 127 °C | 260 °F | 超音速飞行中协和式客机机头的温度 太空已知温度最低的恒星(大约温度)[48] |
433.15 K | 160 °C | 320 °F | 糖浆浓缩至100%糖 蔗糖(食糖)焦糖化 |
450 K | 177 °C | 350 °F | 水星的平均表面温度 黄油的冒烟点 油炸温度 |
453.15 K | 180 °C | 356 °F | 爆米花爆炸 |
483 K | 210 °C | 410 °F | 柴油的自燃温度 |
491 K | 218 °C | 425 °F | 纸的自燃温度 |
519 K | 246 °C | 475 °F | 汽油的自燃温度 |
522 K | 249 °C | 480 °F | 航空煤油(Jet A/Jet A-1)的自燃温度[49] |
525 K | 252 °C | 485 °F | 乳脂的冒烟点 航空煤油(Jet B)的自燃温度[49] |
538 K | 265 °C | 510 °F | 提炼红花油的冒烟点 |
574.5875 K | 301.4375 °C | 574.5875 °F | 华氏和开尔文温标的相交点 |
600.65 K | 327.5 °C | 621.5 °F | 铅的熔点/凝固点 |
647 K | 374 °C | 705 °F | 过热水的临界 |
693 K | 419 °C | 787 °F | 锌的熔点/凝固点 |
723.15 K | 450 °C | 842 °F | 航空汽油的自燃温度[49] |
738 K | 465 °C | 870 °F | 金星的平均表面温度 |
749 K | 476 °C | 889 °F | 镁的自燃温度 |
798 K | 525 °C | 977 °F | 德雷珀点(几乎所有物品都发出暗淡红光的温度)[50] |
858 K | 585 °C | 1085 °F | 氢的自燃温度[51] |
933.47 K | 660.32 °C | 1220.58 °F | 铝的熔点/凝固点 |
1000 K | 726.85 °C | 1340.33 °F |
SI multiples
[编辑]分数 | 倍数 | |||||
---|---|---|---|---|---|---|
值 | 符号 | 名称 | 值 | 符号 | 名称 | |
10−1 K | dK | 分开尔文 | 101 K | daK | 十开尔文 | |
10−2 K | cK | 厘开尔文 | 102 K | hK | 百开尔文 | |
10−3 K | mK | 毫开尔文 | 103 K | kK | 千开尔文 | |
10−6 K | µK | 微开尔文 | 106 K | MK | 兆开尔文 | |
10−9 K | nK | 纳开尔文 | 109 K | GK | 吉开尔文 | |
10−12 K | pK | 皮开尔文 | 1012 K | TK | 太开尔文 | |
10−15 K | fK | 飞开尔文 | 1015 K | PK | 拍开尔文 | |
10−18 K | aK | 阿开尔文 | 1018 K | EK | 艾开尔文 | |
10−21 K | zK | 仄开尔文 | 1021 K | ZK | 泽开尔文 | |
10−24 K | yK | 幺开尔文 | 1024 K | YK | 尧开尔文 | |
10−27 K | rK | 柔开尔文 | 1027 K | RK | 容开尔文 | |
10−30 K | qK | 亏开尔文 | 1030 K | QK | 昆开尔文 |
References
[编辑]- ^ Deppner, Christian; Herr, Waldemar; Cornelius, Merle; Stromberger, Peter; Sternke, Tammo; Grzeschik, Christoph; Grote, Alexander; Rudolph, Jan; Herrmann, Sven; Krutzik, Markus; Wenzlawski, André. Collective-Mode Enhanced Matter-Wave Optics. Physical Review Letters. 2021-08-30, 127 (10): 100401. Bibcode:2021PhRvL.127j0401D. ISSN 0031-9007. PMID 34533345. S2CID 237396804. doi:10.1103/PhysRevLett.127.100401 (英语).
- ^ World record in low temperatures. [2009-05-05]. (原始内容存档于2009-06-18).
- ^ Bose-Einstein condensates break temperature record.
- ^ Savvatimskii, Aleksandr I. Melting point of graphite and liquid carbon (Concerning the paper 'Experimental investigation of the thermal properties of carbon at high temperatures and moderate pressures' by EI Asinovskii, A V Kirillin, and a V Kostanovskii). Physics-Uspekhi. 2003, 46 (12): 1295–1303. Bibcode:2003PhyU...46.1295S. S2CID 250746507. doi:10.1070/PU2003v046n12ABEH001699.
- ^ Yang, C.C.; Li, S. Size-Dependent Temperature-Pressure Phase Diagram of Carbon. Journal of Physical Chemistry C. 2008, 112 (5): 1423–1426. doi:10.1021/jp076049+.
- ^ Correa, A. A.; Bonev, S. A.; Galli, G. Carbon under extreme conditions: Phase boundaries and electronic properties from first-principles theory. Proceedings of the National Academy of Sciences. 2006, 103 (5): 1204–8. Bibcode:2006PNAS..103.1204C. PMC 1345714 . PMID 16432191. doi:10.1073/pnas.0510489103 .
- ^ Wang, Xiaofei; Scandolo, Sandro; Car, Roberto. Carbon Phase Diagram from Ab Initio Molecular Dynamics. Physical Review Letters. 2005, 95 (18): 185701. Bibcode:2005PhRvL..95r5701W. PMID 16383918. S2CID 15373344. doi:10.1103/PhysRevLett.95.185701.
- ^ Gerald I. Kerley and Lalit Chhabildas, "Multicomponent-Multiphase Equation of State for Carbon", Sandia National Laboratories (2001)
- ^ Glosli, James; Ree, Francis. Liquid-Liquid Phase Transformation in Carbon. Physical Review Letters. 1999, 82 (23): 4659–4662. Bibcode:1999PhRvL..82.4659G. doi:10.1103/PhysRevLett.82.4659.
- ^ Man Chai Chang; Ryong, Ryoo; Mu Shik Jhon. Thermodynamic properties of liquid carbon. Carbon. 1985, 23 (5): 481–485. doi:10.1016/0008-6223(85)90083-1.
- ^ Bestenlehner, Joachim M.; Crowther, Paul A.; Caballero-Nieves, Saida M.; Schneider, Fabian R. N.; Simón-Díaz, Sergio; Brands, Sarah A.; De Koter, Alex; Gräfener, Götz; Herrero, Artemio; Langer, Norbert; Lennon, Daniel J.; Maíz Apellániz, Jesus; Puls, Joachim; Vink, Jorick S. The R136 star cluster dissected with Hubble Space Telescope/STIS. II. Physical properties of the most massive stars in R136. Monthly Notices of the Royal Astronomical Society. 2020, 499 (2): 1918. Bibcode:2020MNRAS.499.1918B. arXiv:2009.05136 . doi:10.1093/mnras/staa2801.
- ^ Massey, Philip; Bresolin, Fabio; Kudritzki, Rolf P.; Puls, Joachim; Pauldrach, A. W. A. The Physical Properties and Effective Temperature Scale of O‐Type Stars as a Function of Metallicity. I. A Sample of 20 Stars in the Magellanic Clouds. The Astrophysical Journal. 2004, 608 (2): 1001–1027. Bibcode:2004ApJ...608.1001M. S2CID 119373878. arXiv:astro-ph/0402633 . doi:10.1086/420766.
- ^ Highest man-made temperature. Guinness World Records. Jim Pattison Group. [16 August 2015].
- ^ Whole-Body Cryotherapy FAQs. Coyne Medical. [2023-10-11].
- ^ Jestin Baby Mandumpal. A Journey Through Water: A Scientific Exploration of The Most Anomalous Liquid on Earth. Bentham Science Publishers. 2017: 148. ISBN 9781681084237.
- ^ New study explains Antarctica's coldest temperature. National Snow and Ice Data Center. 25 June 2018 [5 May 2021].
- ^ 17.0 17.1 http://www.nap.edu/openbook.php?record_id=690&page=56 The National Academies Press – Emergency and Continuous Exposure Limits for Selected Airborne Contaminants Volume 2 ( 1984 )
- ^ http://www.wunderground.com/blog/weatherhistorian/the-coldest-places-on-earth Weather Underground – Coldest Places on Earth
- ^ WMO Region VI (Europe): Lowest Temperature. World Meteorological Organization. [31 October 2016].
- ^ 20.0 20.1 http://www.currentresults.com/Weather-Extremes/ Current Results – Worlds Hottest and Coldest Places
- ^ http://www.space.com/9461-snowball-earth-scenario-plunged-planet-million-year-winters.html 'Snowball Earth' Scenario Plunged Our Planet Into Million-Year Winters
- ^ 22.00 22.01 22.02 22.03 22.04 22.05 22.06 22.07 22.08 22.09 22.10 22.11 22.12 22.13 22.14 Veganbaking.net – Fat and Oil Melt Point Temperatures http://www.veganbaking.net/tools/fat-and-oil-melt-point-temperatures
- ^ http://www.weathernotebook.org/transcripts/2001/02/07.html 互联网档案馆的存档,存档日期2013-11-06. The Weather Notebook – 40 Below
- ^ 24.0 24.1 24.2 24.3 24.4 http://wmo.asu.edu/ ASU World Meteorological Organization – Global Weather & Climate Extremes
- ^ Temperature Everest Summit. Himalayan Wonders. [2023-10-11]. (Temperature calculated by averaging monthly temperatures given in graph)
- ^ Freezing and food safety. USDA. [6 August 2013]. (原始内容存档于18 September 2013).
- ^ Can the ocean freeze? Ocean water freezes at a lower temperature than freshwater.. NOAA. [January 2, 2019].
- ^ Chester, Roy; Jickells, Tim. Marine Geochemistry. Blackwell Publishing. 2012. ISBN 978-1-118-34907-6.
- ^ http://www.newton.dep.anl.gov/askasci/chem03/chem03265.htm 互联网档案馆的存档,存档日期2015-02-26. U.S. Dept. of Energy – Office of Science – Oils and Low Temperature
- ^ http://www.esf.edu/efb/schulz/Limnology/mixing.html College of Environmental Science and Forestry – Thermal Stratification
- ^ Agence France Presse in Warsaw. Doctors hail miracle as toddler survives freezing conditions in pyjamas. The Guardian. 2014-12-05 [2015-02-03].
- ^ 2-letni Adaś wyprowadzony z hipotermii. Światowe media donoszą o cudownym dziecku z Polski. Polskie Radio. 2015-12-05 [2015-02-03].
- ^ New record for Antarctic continent reported. World Meteorological Organization. [7 February 2020].
- ^ https://www.climate.gov/news-features/climate-qa/whats-hottest-earths-ever-been What's the hottest Earth's ever been?
- ^ Rintamäki, Hannu. Human responses to cold. Alaska Medicine. 2007, 49 (2 Suppl): 29–31. PMID 17929604.
- ^ https://www.health.harvard.edu/staying-healthy/cold-out-why-you-need-to-wear-a-hat Harvard Health Publishing - Cold out? Why you need to wear a hat!
- ^ Harvard Health Publishing - Time to redefine normal body temperature? https://www.health.harvard.edu/blog/time-to-redefine-normal-body-temperature-2020031319173
- ^ http://people.rit.edu/hmm5837/320/project2/page4.html 互联网档案馆的存档,存档日期2013-11-12. Rochester Institute for Technology – Random Cat Facts
- ^ http://www.jacuzzi.com/hot-tubs/hot-tub-blog/ideal-hot-tub-water-temperature/ 互联网档案馆的存档,存档日期2017-01-26.. Finding The Ideal Hot Tub Temperature. Jacuzzi
- ^ http://www.wunderground.com/blog/JeffMasters/hottest-rain-on-record-rain-falls-at-115f-in-needles-california Wunderground.com – Dr. Jeff Masters' Wunderblog – Hottest rain on record? Rain falls at 115°F in Needles, California
- ^ http://faculty.washington.edu/chudler/clock.html Biological Rhythums
- ^ 42.0 42.1 42.2 Antiscald Inc. [2014-09-12]. (原始内容存档于2014-09-13).
- ^ Highest recorded temperature. Guinness World Records. 10 July 1913 [20 August 2018].
- ^ http://science.howstuffworks.com/dictionary/chemistry-terms/boiling-info.htm HowStuffWorks – Boiling
- ^ Joseph Seckbach, et al.: Polyextremophiles - life under multiple forms of stress. Springer, Dordrecht 2013, ISBN 978-94-007-6487-3,preface; @google books
- ^ "Residential Dishwashers". National Sanitation Foundation. Retrieved on 26 May 2017. http://www.nsf.org/consumer-resources/health-and-safety-tips/home-product-appliance-tips/sanitizing-dishwasher/
- ^ http://www.nps.gov/deva/naturescience/weather-and-climate.htm National Park Service – Death Valley – Weather and Climate
- ^ http://www.ifa.hawaii.edu/research/Stars.shtml University of Hawaii – Institute for Astronomy
- ^ 49.0 49.1 49.2 INTERNATIONAL FIRE TRAINING CENTRE: FIREFIGHTER INITIAL: AVIATION FUELS AND FUEL TANKS 互联网档案馆的存档,存档日期2018-02-19. - International Fire Training Centre
- ^ Draper, John William. On the production of light by heat. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (Taylor & Francis). 1847, 30 (202): 345–359. doi:10.1080/14786444708647190.
- ^ Spontaneous ignition of hydrogen (PDF). hse.gov.uk. 2008.