跳转到内容

所罗门诺夫的归纳推理理论

维基百科,自由的百科全书

所罗门诺夫的归纳推理理论(Solomonoff's theory of inductive inference)是对奥卡姆剃刀叙述的数学化描述。[1][2][3][4][5]该理论指出:在所有能够完全描述的已观测的可计算类中,较短的可计算理论在估计下一次观测结果的概率时具有较大的权重。简而言之,在几组可以给出的答案的假设论述中,假设越少的越被大家选择。引申为“越简单的越易行”。

参考资料

[编辑]
  1. ^ JJ McCall. Induction: From Kolmogorov and Solomonoff to De Finetti and Back to Kolmogorov – Metroeconomica, 2004 – Wiley Online Library.
  2. ^ D Stork. Foundations of Occam's razor and parsimony in learning from ricoh.com – NIPS 2001 Workshop, 2001
  3. ^ A.N. Soklakov. Occam's razor as a formal basis for a physical theory from arxiv.org – Foundations of Physics Letters, 2002 – Springer
  4. ^ Jose Hernandez-Orallo. Beyond the Turing Test (PDF). Journal of Logic, Language and Information. 1999, 9 [2018-07-31]. (原始内容存档 (PDF)于2018-10-09). 
  5. ^ M Hutter. On the existence and convergence of computable universal priors arxiv.org – Algorithmic Learning Theory, 2003 – Springer