跳转到内容

导子

维基百科,自由的百科全书

导子(英語:derivation)在抽象代数中是指代数上的一个函数,推广了导数算子的某些特征。明确地,给定一个环或 k 上一个代数 A,一个 k-导子是一个 k-线性映射 DA → A,满足莱布尼兹法则

更一般地,从 A 映到 A- M 的一个 k-线性映射 D,满足莱布尼兹法则也称为一个导子。A 所有到自身的 k-导子集合记为 Derk(A)。从 AA-模 M 的所有 k-导子集合记为 Derk(A,M)。

导子在不同的数学领域以许多不同的面貌出现。关于一个变量的偏导数Rn 上实值可微函数组成的代数上的一个 R-导子。关于一个向量场李导数可微流形上可微函数代数上的 R-导子;更一般地,它是流形上张量代数的导子。平彻尔导数英语Pincherle derivative是一个抽象代数上的导子的例子。如果代数 A 非交换,则关于 A 中一个元素的交换子定义了 A 到自身的线性映射,这是 A 的一个 k-导子。一个代数 A 装备一个特定的导子 d 组成了一个微分代数,这自身便是一些研究领域的一个重要对象,比如微分伽罗瓦理论

性质

[编辑]

莱布尼兹法则本身有一系列直接推论。首先,如果 x1, x2, … ,xnA,那么由数学归纳法得出

特别地,如果 A 可交换且 x1=x2=…=xn,那么此公式简化成熟悉的幂法则 D(xn) = nxn-1D(x)。如果 A 是有单位的,则 D(1) = 0 因为 D(1) = D(1·1) = D(1) + D(1)。从而,因 D 是 k-线性的,推出对所有 x∈k 有 D(x)=0。如果 kK 是一个子环A 是一个 K-代数,则有包含关系

因为任何 K-导子当然是一个 k-导子。

AMk-导子的集合,Derk(A,M) 是 k-上的一个。而且,k-模 Derk(A) 组成了一个李代数李括号定义为交换子

容易验证两个导子的李括号仍然是一个导子。

分次导子

[编辑]

如果我们有一个分次代数 ADA 上一个阶数 d = |D| 的齐次线性映射,则 D 是一个齐次导子如果

作用在 A 的齐次元素上。一个分次导子是具有相同 ε 的一些齐次导子的和。

如果交换因子 ε = 1,定义变为通常情形;如果 ε = -1,那么对奇数 |D| 有,它们称为反导子

反导子的例子包含作用在微分形式上的外导数内乘

超代数(即:Z2-分次代数)的分次导子经常称为超导子

另见

[编辑]

参考文献

[编辑]