跳转到内容

值域

本页使用了标题或全文手工转换
维基百科,自由的百科全书

数学中,函数的值域(英語:Range)是由定义域中一切元素所能產生的所有函數值集合。有时候也称为函数的

给定函数,集合被称为是值域,记为。值域不应跟陪域相混淆。一般来说,值域只是陪域的一个子集

例子

[编辑]

假设函数为定义在实数上的函数:

定义为

的陪域为,但明顯地不會取到负数值,因此,事实上值域只是非负实数集合,即区间

求法

[编辑]

基本方法

[编辑]

初等函数的值域求法一般为:

  1. 观察法
  2. 不等式法
  3. 反函数法
  4. 复合函数法
  5. 配方法
  6. 判别式法
  7. 图像求值

观察法

[编辑]

例如:

所以值域为

不等式法

[编辑]

反函数法

[编辑]

先求得所要计算的函数的反函数,则反函数的定义域即为原函数的值域。

例如:

它的反函数为

反函数的定义域为:

则原函数的值域为:

复合函数法

[编辑]

配方法

[编辑]

判别式法

[编辑]

图像求值

[编辑]

画出連續函数的图像,则函数图像纵轴的最小值和最大值(若有)组成的区间即为函数的值域。

相关条目

[编辑]