跳至內容

File:Rolling Racers - Moment of inertia.gif

頁面內容不支援其他語言。
這個檔案來自維基共享資源
維基百科,自由的百科全書

Rolling_Racers_-_Moment_of_inertia.gif (480 × 270 像素,檔案大小:1.6 MB,MIME 類型:image/gif、​循環、​126 畫格、​4.2秒)


描述
English: An object's moment of inertia I determines how much it resists rotational motion. In this simulation, four objects are placed on a ramp and left to roll without slipping. Starting from rest, each will experience an angular acceleration based on their moment of inertia.

The objects are, from back to front:

  1. A hollow spherical shell (red)
  2. A solid ball (orange)
  3. A ring (green)
  4. A solid cylinder (blue)

At any moment in time, the forces acting on each object will be its weight, the normal force exerted by the plane on the object and the static friction force. As the weight force and the normal force act on a line through each object's center of mass, they result in no net torque. However, the force due to friction acts perpendicular to the contact point, and therefore it does result in a torque, which causes the object to rotate.

Since there is no slipping, the object's center of mass will travel with speed , where r is its radius, or the distance from a contact point to the axis of rotation, and ω its angular speed. Since static friction does no work, and dissipative forces are being ignored, we have conservation of energy. Therefore:

Solving for , we obtain:

Since the torque is constant we conclude, by Newton's 2nd Law for rotation , that the angular acceleration α is also constant. Therefore:

Where, v0 = 0 and d is the total distance traveled. Therefore, we have:

For a ramp with inclination θ, we have sin θ = h / d. Additionally, for a dimensionless constant k characteristic of the geometry of the object. Finally, we can write the angular acceleration α using the relation :

This final result reveals that, for objects of the same radius, the mass the object are irrelevant and what determines the rate of acceleration is the geometric distribution of their mass, which is represented by the value of k. Additionally, we observe that objects with larger values of k will accelerate more slowly.

This is illustrated in the animation. The values of k for each object are, from back to front: 2/3, 2/5, 1, 1/2. As predicted by the formula found above, the solid ball will have a larger acceleration, reaching the finish line first.
日期
來源 自己的作品
作者 Lucas Vieira
授權許可
(重用此檔案)
Public domain 我,此作品的版權所有人,釋出此作品至公共領域。此授權條款在全世界均適用。
這可能在某些國家不合法,如果是的話:
我授予任何人有權利使用此作品於任何用途,除受法律約束外,不受任何限制。
其他版本 OGG Theora Video: small and [[:File:Rolling Racers - Moment of inertia (HD).ogv|large (HD) and for classroom educational purposes a static image of the finish at File:Rolling Racers - Moment of inertia Photofinish.jpg ]]

POV-Ray source code

Available at the video version's description page.

此圖像經優質圖像指引的評估,被認為是一張優質圖像

العربية  جازايرية  беларуская  беларуская (тарашкевіца)  български  বাংলা  català  čeština  Cymraeg  Deutsch  Schweizer Hochdeutsch  Zazaki  Ελληνικά  English  Esperanto  español  eesti  euskara  فارسی  suomi  français  galego  עברית  हिन्दी  hrvatski  magyar  հայերեն  Bahasa Indonesia  italiano  日本語  Jawa  ქართული  한국어  kurdî  Lëtzebuergesch  lietuvių  македонски  മലയാളം  मराठी  Bahasa Melayu  Nederlands  Norfuk / Pitkern  polski  português  português do Brasil  rumantsch  română  русский  sicilianu  slovenčina  slovenščina  shqip  српски / srpski  svenska  தமிழ்  తెలుగు  ไทย  Tagalog  toki pona  Türkçe  українська  vèneto  Tiếng Việt  中文  中文(简体)  中文(繁體)  +/−

說明

添加單行說明來描述出檔案所代表的內容
Comparision Of Moment Of Inertia for Different Solids.

在此檔案描寫的項目

描繪內容

共享資源質素評價 繁體中文 (已轉換拼寫)

維基共享資源品質形象 中文 (已轉換拼寫)

檔案歷史

點選日期/時間以檢視該時間的檔案版本。

日期/時間縮⁠圖尺寸使用者備⁠註
目前2021年6月16日 (三) 21:01於 2021年6月16日 (三) 21:01 版本的縮圖480 × 270(1.6 MB)TomFryersImprove render quality and increase resolution and framerate slightly
2012年12月23日 (日) 03:10於 2012年12月23日 (日) 03:10 版本的縮圖444 × 250(1.49 MB)LucasVB{{Information |Description=... |Source={{own}} |Date=2012-12-23 |Author= Lucas V. Barbosa |Permission={{PD-self}} |other_versions=OGG Theora video }}

沒有使用此檔案的頁面。

全域檔案使用狀況