跳至內容

File:R'lyeh locations.png

頁面內容不支援其他語言。
這個檔案來自維基共享資源
維基百科,自由的百科全書

原始檔案 (3,000 × 3,000 像素,檔案大小:7.68 MB,MIME 類型:image/png


摘要

描述
English: Locations of R'Lyeh, a fictional city that appeared in the writings of H. P. Lovecraft (†1937). Lovecraft claims R'lyeh is located at 47°9′S 126°43′W in the southern Pacific Ocean. While August Derleth, a contemporary correspondent of Lovecraft and co-creator of the Cthulhu Mythos, placed R'lyeh at 49°51′S 128°34′W. Both locations are close to the Pacific pole of inaccessibility (the "Nemo" point, 48°52.6′S 123°23.6′W), a point in the ocean farthest from any land mass.
日期
來源

自己的作品

 
本PNG 點陣圖使用Matplotlib創作。
作者 Nojhan
其他版本
This map, as well as other fictitious maps, is fictitious or too incorrect (i.e. due to anachronism) to be used in real-life contexts (contemporary or historic). It may have some visual elements that are similar to official maps such as colors or certain layout features, but they are NOT official and don't have any official recognition.

[[Category:]]

Source code

This image has been generated by the following source code in Python:

print "import modules...",
import sys
sys.stdout.flush()
import pickle
from mpl_toolkits.basemap import Basemap, shiftgrid, cm
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from netCDF4 import Dataset
print "ok"

# Lovecraft: 47:9'S 126:43'W
lovecraft_lat = -47.9
lovecraft_lon = -126.43

# August Derleth: 49:51'S 128:34'W
derleth_lat = -49.51
derleth_lon = -128.34

# Nemo point: 48:52.6'S 123:23.6'W
nemo_lat = -48.526
nemo_lon = -123.236

# The Bloop:
# Appears to be way too far from the Nemo point to be interesting in a R'lyeh context
# bransfield_strait_lat=-63
# bransfield_strait_lon=-59
# ross_sea_lat = -75
# ross_sea_lon = -175
# cape_adare_lat = -71.17
# cape_adare_lon = -170.14

# Not necessary, because the default projection is ortho,
# but can be useful if you want another one.
def equi(m, centerlon, centerlat, radius, *args, **kwargs):
    """
    Drawing circles of a given radius around any point on earth, given the current projection.
    http://www.geophysique.be/2011/02/20/matplotlib-basemap-tutorial-09-drawing-circles/
    """
    glon1 = centerlon
    glat1 = centerlat
    X = []
    Y = []
    for azimuth in range(0, 360):
        glon2, glat2, baz = shoot(glon1, glat1, azimuth, radius)
        X.append(glon2)
        Y.append(glat2)
    X.append(X[0])
    Y.append(Y[0])

    #m.plot(X,Y,**kwargs) #Should work, but doesn't...
    X,Y = m(X,Y)
    plt.plot(X,Y,**kwargs)


def shoot(lon, lat, azimuth, maxdist=None):
    """Shooter Function
    Plotting great circles with Basemap, but knowing only the longitude,
    latitude, the azimuth and a distance. Only the origin point is known.
    Original javascript on http://williams.best.vwh.net/gccalc.htm
    Translated to python by Thomas Lecocq :
    http://www.geophysique.be/2011/02/19/matplotlib-basemap-tutorial-08-shooting-great-circles/
    """
    glat1 = lat * np.pi / 180.
    glon1 = lon * np.pi / 180.
    s = maxdist / 1.852
    faz = azimuth * np.pi / 180.

    EPS= 0.00000000005
    if ((np.abs(np.cos(glat1))<EPS) and not (np.abs(np.sin(faz))<EPS)):
        alert("Only N-S courses are meaningful, starting at a pole!")

    a=6378.13/1.852
    f=1/298.257223563
    r = 1 - f
    tu = r * np.tan(glat1)
    sf = np.sin(faz)
    cf = np.cos(faz)
    if (cf==0):
        b=0.
    else:
        b=2. * np.arctan2 (tu, cf)

    cu = 1. / np.sqrt(1 + tu * tu)
    su = tu * cu
    sa = cu * sf
    c2a = 1 - sa * sa
    x = 1. + np.sqrt(1. + c2a * (1. / (r * r) - 1.))
    x = (x - 2.) / x
    c = 1. - x
    c = (x * x / 4. + 1.) / c
    d = (0.375 * x * x - 1.) * x
    tu = s / (r * a * c)
    y = tu
    c = y + 1
    while (np.abs (y - c) > EPS):

        sy = np.sin(y)
        cy = np.cos(y)
        cz = np.cos(b + y)
        e = 2. * cz * cz - 1.
        c = y
        x = e * cy
        y = e + e - 1.
        y = (((sy * sy * 4. - 3.) * y * cz * d / 6. + x) *
              d / 4. - cz) * sy * d + tu

    b = cu * cy * cf - su * sy
    c = r * np.sqrt(sa * sa + b * b)
    d = su * cy + cu * sy * cf
    glat2 = (np.arctan2(d, c) + np.pi) % (2*np.pi) - np.pi
    c = cu * cy - su * sy * cf
    x = np.arctan2(sy * sf, c)
    c = ((-3. * c2a + 4.) * f + 4.) * c2a * f / 16.
    d = ((e * cy * c + cz) * sy * c + y) * sa
    glon2 = ((glon1 + x - (1. - c) * d * f + np.pi) % (2*np.pi)) - np.pi	

    baz = (np.arctan2(sa, b) + np.pi) % (2 * np.pi)

    glon2 *= 180./np.pi
    glat2 *= 180./np.pi
    baz *= 180./np.pi

    return (glon2, glat2, baz)


print "read in etopo5 topography/bathymetry"
url = 'http://ferret.pmel.noaa.gov/thredds/dodsC/data/PMEL/etopo5.nc'
etopodata = Dataset(url)

print "get data"

def topopickle(etopodata,name):
    import sys
    print "\t"+name+"...",
    sys.stdout.flush()
    filename = "rlyeh_"+name+".pickle"
    try:
        with open(filename,"r") as fd:
            print "load...",
            var = pickle.load(fd)
    except IOError:
        print "copy...",
        var = etopodata.variables[name][:]
        with open(filename,"w") as fd:
            print "dump...",
            pickle.dump(var,fd)
    print "ok"
    return var

topoin = topopickle(etopodata,"ROSE")
lons   = topopickle(etopodata,"ETOPO05_X")
lats   = topopickle(etopodata,"ETOPO05_Y")
print "shift data so lons go from -180 to 180 instead of 20 to 380...",
sys.stdout.flush()
topoin,lons = shiftgrid(180.,topoin,lons,start=False)
print "ok"


# create the figure and axes instances.
fig = plt.figure()
ax = fig.add_axes([0.1,0.1,0.8,0.8])

print "setup basemap"
# set up orthographic m projection with
# perspective of satellite looking down at 50N, 100W.
# use low resolution coastlines.
m = Basemap(projection='ortho',lat_0=nemo_lat,lon_0=nemo_lon,resolution='l')
m.bluemarble()

# Generic Mapping Tools colormaps:
# GMT_drywet, GMT_gebco, GMT_globe, GMT_haxby GMT_no_green, GMT_ocean, GMT_polar,
# GMT_red2green, GMT_relief, GMT_split, GMT_wysiwyg

print "transform to nx x ny regularly spaced native projection grid"
# step=5000.
step=10000.
nx = int((m.xmax-m.xmin)/step)+1; ny = int((m.ymax-m.ymin)/step)+1
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)

print "plot topography/bathymetry as shadows"
from matplotlib.colors import LightSource
ls = LightSource(azdeg = 45, altdeg = 220, hsv_min_val=0.0, hsv_max_val=1.0,
        hsv_min_sat=0.0, hsv_max_sat=1.0)
# convert data to rgb array including shading from light source.
# (must specify color m)
rgb = ls.shade(topodat, cm.GMT_ocean)
im = m.imshow(rgb, alpha=0.15)

print "draw coastlines, country boundaries, fill continents"
m.drawcoastlines(linewidth=0.25)
# draw the edge of the map projection region
m.drawmapboundary(fill_color='white')
# draw lat/lon grid lines every 30 degrees.
m.drawmeridians(np.arange(  0,360,30), color="black" )
m.drawparallels(np.arange(-90,90 ,30), color="black" )

print "draw points"
psize=5
font = {'family' : 'serif',
        'weight' : 'normal',
        'size'   : 18}
matplotlib.rc('font', **font)

x,y = m( lovecraft_lon, lovecraft_lat )
m.scatter(x,y,psize,marker='o', color='white')
plt.text(x+50000,y+50000+50000, "Lovecraft", color='white')

x,y = m( derleth_lon, derleth_lat )
m.scatter(x,y,psize,marker='o',color='white')
plt.text(x+50000-120000,y+50000, "Derleth", color='white', horizontalalignment="right")

x,y = m( nemo_lon, nemo_lat )
m.scatter(x,y,psize*3,marker='+',color='#555555')
plt.text(x+50000+50000,y+50000-80000, "Nemo", color="#555555", verticalalignment="top")

equi(m, nemo_lon, nemo_lat, radius=2688, color="#555555" )

# x,y = m( bransfield_strait_lon, bransfield_strait_lat )
# m.scatter(x,y,psize*3,marker='+',color='#555555')
# plt.text(x+50000+20000,y+50000-80000, "bransfield_strait", color="#555555", verticalalignment="baseline")

# x,y = m( ross_sea_lon, ross_sea_lat )
# m.scatter(x,y,psize*3,marker='+',color='#555555')
# plt.text(x+50000+20000,y+50000-80000, "ross_sea", color="#555555", verticalalignment="baseline")

# x,y = m( cape_adare_lon, cape_adare_lat )
# m.scatter(x,y,psize*3,marker='+',color='#555555')
# plt.text(x+50000+20000,y+50000-80000, "cape_adare", color="#555555", verticalalignment="baseline")

plt.savefig("R'lyeh_locations.png", dpi=600, bbox_inches='tight')
# plt.show()
拍攝地點47° 54′ 00″ 南, 126° 25′ 48″ 西 Kartographer map based on OpenStreetMap.位於此地的本圖片與其他圖片: OpenStreetMapinfo

授權條款

我,本作品的著作權持有者,決定用以下授權條款發佈本作品:
w:zh:創用CC
姓名標示 相同方式分享
您可以自由:
  • 分享 – 複製、發佈和傳播本作品
  • 重新修改 – 創作演繹作品
惟需遵照下列條件:
  • 姓名標示 – 您必須指名出正確的製作者,和提供授權條款的連結,以及表示是否有對內容上做出變更。您可以用任何合理的方式來行動,但不得以任何方式表明授權條款是對您許可或是由您所使用。
  • 相同方式分享 – 如果您利用本素材進行再混合、轉換或創作,您必須基於如同原先的相同或兼容的條款,來分布您的貢獻成品。

說明

添加單行說明來描述出檔案所代表的內容

在此檔案描寫的項目

描繪內容

檔案來源 Chinese (Taiwan) (已轉換拼寫)

47°54'0"S, 126°25'48"W

檔案歷史

點選日期/時間以檢視該時間的檔案版本。

日期/時間縮⁠圖尺寸使用者備⁠註
目前2013年2月12日 (二) 20:49於 2013年2月12日 (二) 20:49 版本的縮圖3,000 × 3,000(7.68 MB)NojhanHigh resolution, draw the radius of the oceanic pole of inaccessibility, even more larger font, remove the bloop location, that appeared to be wrong.
2013年2月10日 (日) 23:01於 2013年2月10日 (日) 23:01 版本的縮圖946 × 945(1.21 MB)Nojhanlargest font possible
2013年2月10日 (日) 22:57於 2013年2月10日 (日) 22:57 版本的縮圖946 × 944(1.22 MB)XenonX3cropped
2013年2月10日 (日) 22:56於 2013年2月10日 (日) 22:56 版本的縮圖943 × 943(1.12 MB)Dennis BratlandCropped unnecessary whitespace. Displays was too small.
2013年2月10日 (日) 22:43於 2013年2月10日 (日) 22:43 版本的縮圖2,100 × 1,178(1.28 MB)NojhanSerif font.
2013年2月10日 (日) 22:32於 2013年2月10日 (日) 22:32 版本的縮圖2,100 × 1,178(1.28 MB)NojhanAdd the Bloop location, larger font size.
2013年2月10日 (日) 22:15於 2013年2月10日 (日) 22:15 版本的縮圖2,100 × 1,178(1.28 MB)NojhanUser created page with UploadWizard

下列頁面有用到此檔案:

全域檔案使用狀況

以下其他 wiki 使用了這個檔案:

詮釋資料