跳转到内容

File:Algorithmically-generated AI-generated artwork of a futuristic city left in destruction.png

页面内容不支持其他语言。
這個文件來自維基共享資源
维基百科,自由的百科全书

原始文件 (8,192 × 4,096像素,文件大小:25.97 MB,MIME类型:image/png


摘要

描述

Algorithmically-generated AI science-fiction artwork featuring a futuristic metropolis laid to complete devastation, created using the Stable Diffusion V1-4 AI diffusion model.

Procedure/Methodology

All artworks created using a single NVIDIA RTX 3090. Front-end used for the entire generation process is Stable Diffusion web UI created by AUTOMATIC1111.

A single 768x512 image was generated with txt2img using the following prompts:

Prompt: highly detailed, high quality, digital painting of a destroyed and lifeless futuristic city in ruin and disarray, planets, galaxies, art style of Juan Wijngaard and Albert Bierstadt, ray traced, octane render, 8k

Negative prompt: none

Settings: Steps: 50, Sampler: Euler a, CFG scale: 7, Size: 768x512

Afterwards, the image was extended by 128 pixels on the top, bottom, left and right sides using fourteen successive passes of the "Outpainting mk2" script within img2img, adding additional detail to the image one after the other, until the image's dimensions reached 2048x1024 as its natively generated size (prior to the commencement of any upscaling). For each individual pass, this was done using a setting of 100 sampling steps with Euler a, denoising strength of 0.8, CFG scale of 7, mask blur of 8, fall-off exponent value of 1.8, colour variation set to 0.03. This subsequently increased the field of view of the image compared to the originally generated image, from one tiny portion of the cityscape in the centre of the image, to a significantly wider view of the foreground debris.

Then, two passes of the SD upscale script using "SwinIR_4x" were run within img2img. The first pass used a tile overlap of 128, denoising strength of 0.01 (anything above 0.03 loses a lot of detail among the burning city grid in the distance), 150 sampling steps with Euler a, and a CFG scale of 7. The second pass used a tile overlap of 256, denoising strength of 0.01, 150 sampling steps with Euler a, and a CFG scale of 7. This creates our final 8192x4096 image.
日期
来源 自己的作品
作者 Benlisquare
授权
(二次使用本文件)
Output images

As the creator of the output images, I release this image under the licence displayed within the template below.

Stable Diffusion AI model

The Stable Diffusion AI model is released under the CreativeML OpenRAIL-M License, which "does not impose any restrictions on reuse, distribution, commercialization, adaptation" as long as the model is not being intentionally used to cause harm to individuals, for instance, to deliberately mislead or deceive, and the authors of the AI models claim no rights over any image outputs generated, as stipulated by the license.

Addendum on datasets used to teach AI neural networks
Artworks generated by Stable Diffusion are algorithmically created based on the AI diffusion model's neural network as a result of learning from various datasets; the algorithm does not use preexisting images from the dataset to create the new image. Ergo, generated artworks cannot be considered derivative works of components from within the original dataset, nor can any coincidental resemblance to any particular artist's drawing style fall foul of de minimis. While an artist can claim copyright over individual works, they cannot claim copyright over mere resemblance over an artistic drawing or painting style. In simpler terms, Vincent van Gogh can claim copyright to The Starry Night, however he cannot claim copyright to a picture of a T-34 tank painted with similar brushstroke styles as Gogh's The Starry Night created by someone else.

许可协议

我,本作品著作权人,特此采用以下许可协议发表本作品:
w:zh:知识共享
署名 相同方式共享
本文件采用知识共享署名-相同方式共享 4.0 国际许可协议授权。
您可以自由地:
  • 共享 – 复制、发行并传播本作品
  • 修改 – 改编作品
惟须遵守下列条件:
  • 署名 – 您必须对作品进行署名,提供授权条款的链接,并说明是否对原始内容进行了更改。您可以用任何合理的方式来署名,但不得以任何方式表明许可人认可您或您的使用。
  • 相同方式共享 – 如果您再混合、转换或者基于本作品进行创作,您必须以与原先许可协议相同或相兼容的许可协议分发您贡献的作品。
GNU head 已授权您依据自由软件基金会发行的无固定段落及封面封底文字(Invariant Sections, Front-Cover Texts, and Back-Cover Texts)的GNU自由文件许可协议1.2版或任意后续版本的条款,复制、传播和/或修改本文件。该协议的副本请见“GNU Free Documentation License”。
您可以选择您需要的许可协议。

说明

添加一行文字以描述该文件所表现的内容

此文件中描述的项目

描繪內容

4,096 像素

8,192 像素

dfbde661fcf43d7d7fe53dd60d87bc079d6e1465

27,233,150 字节

文件历史

点击某个日期/时间查看对应时刻的文件。

日期/时间缩⁠略⁠图大小用户备注
当前2023年8月8日 (二) 14:412023年8月8日 (二) 14:41版本的缩略图8,192 × 4,096(25.97 MB)Obscure2020Optimized with OxiPNG and ZopfliPNG.
2022年10月3日 (一) 13:542022年10月3日 (一) 13:54版本的缩略图8,192 × 4,096(30.92 MB)Benlisquare{{Information |Description=Algorithmically-generated AI science-fiction artwork featuring a futuristic metropolis laid to complete devastation, created using the [https://github.com/CompVis/stable-diffusion Stable Diffusion V1-4] AI diffusion model. ;Procedure/Methodology All artworks created using a single NVIDIA RTX 3090. Front-end used for the entire generation process is [https://github.com/AUTOMATIC1111/stable-diffusion-webui Stable Diffusion web UI] created by [https://github.com/AUTOM...

以下页面使用本文件: