仿射q克拉夫楚克多项式
外观
(重定向自仿射Q克拉夫楚克多项式)
仿射q克拉夫楚克多项式是以基本超几何函数定义的正交多项式[1]
极限关系
[编辑]Q哈恩多项式→ 量子Q克拉夫楚克多项式:
仿射q克拉夫楚克多项式→ 小q拉盖尔多项式:
图集
[编辑]参考文献
[编辑]- ^ Roelof Koekoek, Hypergeometric Orthogonal Polynomials and its q-Analogues, p501,Springer,2010
- Gasper, George; Rahman, Mizan, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications 96 2nd, Cambridge University Press, 2004, ISBN 978-0-521-83357-8, MR 2128719, doi:10.2277/0521833574
- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F., Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, 2010, ISBN 978-3-642-05013-8, MR 2656096, doi:10.1007/978-3-642-05014-5
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F., http://dlmf.nist.gov/18
|contribution-url=
缺少标题 (帮助), Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (编), NIST Handbook of Mathematical Functions, Cambridge University Press, 2010, ISBN 978-0521192255, MR2723248 - Stanton, Dennis, Three addition theorems for some q-Krawtchouk polynomials, Geometriae Dedicata, 1981, 10 (1): 403–425, ISSN 0046-5755, MR 0608153, doi:10.1007/BF01447435